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Preface

When I first began work on logic extraction it appeared that the process of deriving hierarchy

from a "sea" of transistors was intuitive. From observing engineers working on layout descriptions,

it appeared that the human's ability to generate simple gate-level schematics from a transistor

netlist was as simple as a bird taking to flight. However, as the process of a bird flying is more

complicated than a matter of flapping its wings, logic extraction is more complicated than a matter

of just matching a template or a rule. There are properties of the bird not readily apparent to

the observer, such as the aerodynamics of the wings and the coordination of guidance between the

tail and the wings. In much the same manner, there are properties of logic extraction not readily

apparent to the engineer, such as connectivity, internal and external, of an extracted component.

Just as the Wright brothers captured the essence of flight, I have captured the essence of

logic extraction. For the past several years, others have tried to perform logic extraction and

thought that they had achieved it. Now that logic extraction is presented in a formal fashion in

this dissertation, I hope that the interested individual will see that it is not as simple as it appears.

I also hope that using logic extraction for hardware-verification will become more popular than

simulation.

I wish to acknowledge my committee for the time they invested proof-reading my dissertation.

My committee members, Dr. Frank M. Brown, Dr. Joanne E. DeGroat, Dr. Matthew Kabrisky,

Dr. Mark A. Mehalic, and Dr. Henry Potoczny, all provided helpful comments and support in my

research. I am especially grateful to Dr. Frank M. Brown for keeping all the details in the right

order and to Dr. Joanne E. DeGroat for keeping the macroview of the research in perspective. The

talents of both provided the appropriate balance.

I also wish to express my appreciation to the Solid State Electronics Directorate of Wright

Laboratory. Wright Laboratory provided all of the equipment and lab space for my work. Working

at Wright Laboratory helped provide additional insight into the needs of the Army and Air Force,
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which helped guide my work. I am indebted to Dr. John Hines who orchestrated all of the support

and Darrell Barker for the time he spent ensuring all of the equipment was arriving when needed.

I also want to mention the support I received from Luis Concha and Captain Karen Serafino who

performed related work to my research as well as Debora McDivitt and Valerie Holler who ensured

I arrived at various TDY locations when needed. If I have left anyone out, I apologize, it was not

intentional.

The dissertation contains nine chapters and four appendices. Chapter 1 is an introduction to

the dissertation. Chapter 2 discusses different methods used in comparing behavioral specifications,

structural specifications, and layout specifications. Chapter 3 contains a survey of past attempts at

logic extraction and a description of the structural specification and layout specification used in the

dissertation. Chapter 4 demonstrates the consistency, completeness, and termination properties of

logic extraction. In Chapter 5, several hardware delay models used to dem-nstrate the feasibility

of pin-to-pin critical path analysis are presented. A pin-to-pin critical path analysis procedure with

logic extraction is discussed in Chapter 6. Some results using logic extraction are presented in

Chapter 7. Chapter 8 lists some limitations that impact on the completeness of logic extraction.

Chapter 9 lists conclusions and recommendations for future work.

Several appendices are provided with the dissertation. They serve to provide some background

material and support to the content of the dissertation. Appendix A contains definitions of terms

and concepts used in the dissertation. Appendix B contains suggestions for improving the efficiency

of the logic extraction process. Appendix C is a demonstration of how HOL is used to compare a

behavioral specification and a structural specification. Appendix D is an approach to translating

VHDL data-flow models to VHDL structural models. Finally, Appendix E is a brief discussion of

formal methods.

Michael Alan Dukes
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Abstract

A Prolog-based system is described which employs logic-extraction to perform hardware-

verification. The extraction rules are built automatically from hierarchical structural VHDL models,

enabling the equivalence of a structural VHDL description and a layout specification to be verified.

Pin-to-pin critical-path analysis is performed within the logic-extraction process; many noncritical

paths are pruned early, making pin-to-pin critical path analysis of large circuits feasible. It is

demonstrated that a design methodology based on logic extraction, VHDL, and a layout tool can

provide a fabricated functionally-correct IC design without circuit-level or switch-level simulation.

This methodology is shown to be practical for VLSI designs up to 250,000 transistors in size. The

properties of correctness, completeness, and guaranteed termination are examined for the extraction

process.
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HARDWARE-VERIFICATION THROUGH LOGIC EXTRACTION

I. Introduction

The Department of Defense has adopted VHDL' as a standard means of documenting digital

designs. A structural description in VHDL is an orderly top-down hierarchical decomposition

of a circuit into sub-structures; these are comprehensible, at every level, to the designer. The

ultimate product of design, however, is a transistor-layout, a file describing large numbers (up to

hundreds of thousands) of interconnected transistors. This file is used to manufacture the circuit in

silicon. To be certain that the design complies with its documentation, the designer must somehow

convince himself that the layout-representing a seemingly-formless mass of transistors and wires-

is a realization of its tidy VHDL description. To do so by inspection is beyond human capability.

Instead, the designer today must revert, in software, to the breadboard-testing of earlier days: he

checks his design by conducting an input-output experiment, applying a sequence of inputs to a

simulated transistor-layout and comparing the resulting outputs with those that would be produced

by the VHDL description.

Though greatly assisted by VHDL, stimulus-response experiments are inherently deficient

as a way to ensure the compliance of a design with its documentation. The number of required

test-inputs increases astronomically as the size of a circuit increases; moreover, memory-elements

(present in most circuits) vastly complicate the task of producing and interpreting a test-sequence.

Designers continue testing-by-simulation because no practical alternative has been available. The

work presented in this dissertation provides one alternative.

SVHDL is an acronym for VHSIC Hardware Descri,-tion Language and VHSIC is an acronym for Very High Speed

Integrated Circuit. VHSIC-class integrated circuits include designs larger than 100,000 transistors. VHDL is IEEE
Standard 1076-1987 (IEEE 87).



This research is based on the discovery that circuit-extraction, a well-known technique, may

be used for purposes which apparently have never before been contemplated. To "extract" a

circuit means to begin with a low-level description of its structure and to derive a higher-level

description. A typical extraction-system might accept a description of a circuit as an interconnection

of transistors and generate a description of the same circuit as an interconnection of components

such as registers, adders, and multiplexers.

An original objective was to develop an extraction-system that would accept a transistor-level

(or gate-level) description of a circuit and would generate a hierarchical description of the circuit

in VHDL. Such extraction has not, to our knowledge, been possible until now, and would be of

significant value to the digital-design community. It has turned out to be a relatively simple by-

product, however, of the system that has emerged. Called GES (Generalized Extraction System),

the system performs the following tasks:

1. Formal Hardware-Verification. GES verifies that a hardware design is fully compli-

ant with its hardware documentation. Supplied with a structural description in hierarchical

VHDL, GES first produces a custom extractor capable of extracting only the specified struc-

ture. GES then attempts an extraction. If the attempt succeeds, the design is verified to

be 100% compliant with the documentation. If the attempt fails, then the design may de-

viate from its documentation in some respect. In the latter case, GES provides diagnostic

information which enables the designer quickly to determine the nature and location of the

deviation.

2. Reverse-Engineering of Undocumented Designs. The DOD has a serious problem in

replacing parts whose functional documentation is either incomplete or non-existent. Given a

low-level description (at the transistor or gate level), GES will produce a functional description

of the circuit. GES also produces timing information and high-level VHDL documentation.

The "views" of the circuit that are produced may be tailored to individual requirements.
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3. Detection and Location of Errors in Design. At different levels in the process of

extraction, design-rule checks are performed by GES to identify improperly configured com-

ponents.

4. Assistance in Incremental Documented Design. GES enables documentation and

layout to stay in step. At each stage of design, a circuit is guaranteed to comply with

its VHDL description; at no point is simulation necessary. The direct use of the VHDL

documentation to verify a layout not only encourages a designer to keep his documentation

current, it requires him to do so. Documentation is typically something conjured ex post

facto; using GES, however, the documentation becomes an essential part of the process of

design. If modifications to a circuit-layout are required, the designer using GES must modify

the VHDL documentation first. GES thus provides a useful stimulus to keep documentation

current.

5. Critical-Path Analysis. GES locates pin-to-pin critical paths in a layout. The requisite

timing calculations are based on distributed resistance and capacitance values derived from

the layout-description.

The process of formal hardware-verification presented in this paper combines two techniques.

The first technique, somewhat similar to that of (Papas 88), uses a rule-based logical extraction

process to prove 100% functional compliance between a structural hardware description and its

associated component netlist. For true verification of digital hardware, both the functional and

temporal aspect of the design must be examined. Thus, a second technique, involving list process-

ing, is used to extract pin-to-pin critical paths from the structural hardware description and its

associated component netlist. The critical paths of the hardware model and the component netlist

may be compared to ensure that the timing in the circuit meets the restrictions on delays specified

in the digital hardware description.

3



Computer Aided Design of Hardware

The process of CAD development of hardware involves several steps with various tools to aid in

the design process. Figure 1 is a diagram of the general flow of the design process as it has existed,

void of formal hardware-verification. This process begins with the development of a hardware

behavioral specification 2 . Several iterations through simulation may be required to examine the

behavior and modify the behavioral specification until it matches the desired performance. Once

a behavioral specification has been established, some form of synthesis is employed to generate a

description of the structural specification. Synthesis in this context is performed by first deriving a

netlist from the behavioral specification then optimizing the derived netlist into its implementation

form. The synthesis may be performed manually or automatically. The structural specification

is a description of the actual hardware component to be realized. At this point, the behavioral

and structural specifications are simulated to generate test vectors for comparison. Notice that

the simulation of the behavioral specification performed at this point is in addition to the one

performed earlier for examining the behavioral specification. This process of ensuring conformance

is referred to as validation.

From the implementation specification, layout of the integrated circuit is performed, again,

through synthesis. As before, the synthesis may be either manual or automatic. From the gener-

ated layout-specification, a transistor netlist may be generated for use in a switch-level simulator

(Terma 80). The results produced by the switch-level simulator are then compared against the

results of the structural-specification simulation. Once the layout-specification is shown to conform

to the structural specification, it is transformed into a format that may be sent to a fabrication

service for production of the integrated circuit 3 .

Once the component has been fabricated it must be tested for fabrication flaws. A set of

test vectors is run on the integrated circuit. The test results are compared against the results of

2 See Appendix A for a discussion of behavioral and structural specifications.
'For the purpose of this presentation, the CALTECH Intermediate Format (CIF) was chosen.
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Behavioral Specification Simulation

Synthesis Validation

Structural Specification Simulation

Synthesis Validation

Layout Specification imulation

I li

Fabrication Fault Analysis1 1
Integrated Circuit Test Bench

Figure 1. General CAD Development of Hardware.
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simulating the structural specification. Should conformance exist between the integrated circuit

and the structural specification, the integrated circuit is assumed to be correct.

Figure 2 is a diagram of a general CAD environment that includes the use of formal hardware-

verification. With the use of formal hardware-verification, it is no longer necessary to simulate the

behavioral specification for the purpose of generating test vectors for the structural specification.

The simulation of the structural specification is necessary only for comparison against the final

fabricated component.

Problem

Using simulation to validate compliance between a structural specification and its layout

specification is no longer acceptable. Designs built today have increased in complexity well beyond

the designs built through breadboarding. Though simulation was sufficient for small 1,000-transistor

designs, designs are currently being constructed on the scale of 100,000 to 1,000,000 transistors. To

help understand the complexity of the problem, consider a 32-bit adder.

A hardware structure typically found on an ASIC today is a 32-bit adder. Such an adder may

be implemented in a number of different ways (Weste 85:310-331). Regardless of the implemen-

tation, for input there are 32 bits for one operand, 32 bits for a second operand, and a carry bit.

The total number of input-bits for a 32-bit adder is thus 65. For an exhaustive simulation 4 at least

36,893,488,147,419,103,232 test vectors would be required. If we assume that a simulator running

today could handle 1,000 test vectors per second, the system would complete the simulation within

1,169,884,834 years; however, simulation to this extent would still not guarantee equivalence be-

tween the structural specification and the layout specification. All that is guaranteed is that both

the structural specification and the layout specification are equivalent for the given test-vector

sequence. Therefore, performing exhaustive simulation is ineffective, even for simple designs.

4 The next chapter provides a case where exhaustive simulation for an assumed combinational circuit may not be
sufficient, requiring even more test vectors than shown here.
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Behavioral Specification rSimulation1 T
Synthesis Verification

IStructural Specification imulation

Synthesis Verification Fault AnalysisI I
Layout Specification

Fabrication 14
Integrated Circuit Test Bench

Figure 2. General CAD Development Using Formal Hardware-Verification.
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Solution

One way to overcome the deficiencies of simulation is through logic extraction. Logic extrac-

tion ensures that a layout-specification is equivalent to a structural specification. Further, the time

that it takes to verify the equivalence between a structural specification and a layout-specification

of designs like the 32-bit adder is several seconds of total CPU time. As a result of the research

reported here, a formal basis for logic extraction is presented, logic extraction of large VHSIC-class

chips is possible, and the modest CPU/memory requirements of logic extraction make verification

of 1,000,000-transistor designs a reality. Thus, the objective of this research is to establish a for-

mal definition of logic extraction, discuss properties of logic extraction as they relate to formal

hardware-verification, and demonstrate that logic extraction is practical for VHSIC-class designs.

Overview

GES is a collection of programs written in Prolog. Prolog is used as the vehicle for investigat-

ing and implementing logic extraction, since logic programming is directly implemented. A logic

program is a collection of rules, where a rule has the form,

A -- B,...,B,

and n > 0 (Sterl 86:8-15). GES consists of several Prolog programs that perform the following

functions.

1. ges - the logic extraction system

2. sim2pro - a filter for translating a .sim transistor netlist to ges format

3. vhdl2ges - generates ges from a hierarchical VHDL structural description

4. flatten - flattens a hierarchical VHDL structural description to a netlist of its lowest-level

components

8



5. vhdl2ecpv - generates ges from VHDL for extracting critical paths in a netlist generated by

flatten

6. vhdl2ecpl - gewerates ges from VHDL for extracting critical paths from layout

7. ges2vhdl - generates VHDL structural description from an extracted component netlist

8. geng2v - generates a ges2vhdl tool from a collection of hierarchical VHDL structural descrip-

tions

This dissertation will focus on proving several properties about ges5 . These properties are cor-

rectness, completeness, and termination. By demonstrating correctness, we show that any circuit

successfully extracted by ges is indeed the circuit that was intended to be built. By demonstrating

completeness, we would like to show that if a circuit was built according to its structural specifica-

tion, ges would succeed in extracting it; however, we will show that this is not always the case for

logic extraction. We will also show that logic extraction, through ges, is guaranteed to terminate.

Finally, we will show that pin-to-pin critical path analysis is possible within the context of logic

extraction.

5 GES encompasses all of the Prolog programs enumerated here. ges is the Prolog program that performs the
logic extraction.

9



II. Validation, Synthesis, and Verification

Several approaches to ensuring the conformance of hardware implementations to hardware

specifications are reviewed in this chapter. These approaches are generally referred to as validation,

verification, and synthesis. We will show that validation is inadequate for today's designs. We will

also show that the assertion of "correct by construction" made by designers of synthesis tools is not

true. All of these approaches are related to this work and help to place this work in perspective.

Beiore examining these different approaches, the generic design process presented in Figure 1 and

Figure 2 should be reviewed.

Validation Techniques

Validation is concerned with demonstrating the functionality of a given circuit for a selected

set of input stimuli and output responses. Stated another way, validation is used to demonstrate,

through a collection of results or test vectors, the compliance of one hardware description with

another hardware description. Simulation is also used as a name for the process of validation.

Exhaustive simulation is not feasible for any but the simplest of digital designs. If we consider

only a 32-bit register, there are over four billion possible output responses for any one given input

(Barro 84:438). The process of simulation is NP-complete and in some cases may not be exhaustive.

Problems with design validation are not limited to its intractability alone. Two basic types of

simulation, event-driven and switch-level, a-e ilso prone to complications due to the nature of the

simulation cycle. Switch-level simulators, for example, are generally used to perform simulation

of the mask layout description as a means of validation (Terma 86). This type of simulation

is based on a state model. As such, the simulation cycle is based on propagating logic values

through a circuit network until a steady state is reached. For combinational logic circuits, this

type of simulation model does not present any difficulty. For sequential circuitry and systems

with oscillating feedback loops, simulator problems are generated through nonconverging circuit

10



configurations. Certain other sequential circuits can also introduce race conditions that cannot

be handled. Circuits that have oscillators as part of their normal makeup never converge to a

steady state value once they are set to oscillate. Since the circuit never converges to a steady state,

simulation using switch-level simulators is not practical.

Using switch-level simulators to identify errors in a circuit may also prove difficult. Consider

the circuits shown in Figure 3(Bryan 87). Should the sequence of test vectors for (A,B) be chosen

as ((0,0), (0,1), (1,1), (1,0)), the result for (A,B,Out) would yield the sequence ((0,0,1), (0,1,0),

(1,1,0), (1,0,0)). The same sequence would be seen for both the correct NOR-gate implementation

and the flawed NOR-gate implementation. The capacitive storage on the flawed NOR-gate circuit

allows for a logical 0 on Out when (A,B) is set to (1,0). However, had the sequence for (AB) been

chosen as ((0,0), (1,0), (1,1), (0,1)) the flaw would have been detected for (A,B,Out) as (1,0,1).

This example demonstrates that flaws in a combinational circuit may not be found even when an

"exhaustive" sequence is used to simulate the circuit's behavior.

A:cI
Oul Out

B-A A-] BAd

CORRECT FLAWED

Figure 3. Circuit Diagrams for a NOR-Gate and Flawed NOR-Gate.

Event-driven simulators are based on propagating signals using time-value pairs (IEEE 87).

This type of simulation allows for delay to be considered. Sequential circuits that oscillate, then, do

11



not cause undeterminable results. This type of simulation usually is performed on digital circuits

at the gate level.

Synthesis

The purpose of this section is to discuss problems of using automatic synthesis alone in the

hardware design process. Ideally, synthesis translates a register-transfer level (RTL) description

(structural specification) directly to a layout-specification. However, practical synthesis is a two-

step process involving translation from a RTL description to a component netlist followed by an

optimization step. The translation portion of synthesis maps a RTL description of a design in a

hardware description language1 to a gate-level netlist (deGeu 89:27). Afterwards, optimization of

the gate-level netlist is performed. The optimization step may be based on an optimization process

using the Quine-McCluskey (McClu 56) method or usi ., a nile-based substitution process.

The first problem with synthesis concerns the completeness of the required design specifi-

cation. The behavior of the design must bc -, cfribcd crmpletely in order for synthesis tools to

generate a hardware description. If we assume a specification that describes the output condition

when A=B=I to be 1 and the output condition for A=B=O to be 0 without further information,

synthesis cannot be performed. We may assume don't care conditions for the other two situations;

however, this condition must be explicitly stated. The designer may be required to fully describe

a given design even when doing so may be highly inconvenient.

Synthesis is a highly complex process. To further complicate the problem, VHDL is composed

of many procedural and declarative language constructs. The complexity of synthesis ai d the many

features of VHDL can contribute to generating inadvertant errors during the mapping to a gate-

level netlist, optimization, or the mapping to a layout specification (Devad 88:182). TLtrefore,

synthesis needs to be checked by a verification system to ensure conformance.

'VHDL is the standard hardware description language used for a RTL description.
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Another problem with synthesis is the limited set of design solutions that are provided. Gen-

erally, a fixed generation-pattern from a RTL representation in VHDL to a gate-level netlist exists

for a given language construction. For example, a case statement in VHDL may be mapped di-

rectly to a series of multiplexers n hardware. Some synthesis tools provide the means to make space

versus area tradeoffs during optimization (deGeu 89:29). However, these solutions are equivalent

solutions. Other 'olutions may exist that meet the criteria of the behavioral specification, but are

not equivalent. For the purpose of illustration, assume that a designer wishes to incorporate a full

adder into a design. Assume also that previously fabricated components exist, but with two full

adders on a chip. The chip with two full adders would suffice for the needs of the designer; how-

ever, the synthesis system would tell the designer to design a new component comprising one full

adder. This problem limits the designer to a confined solution space when investigating alternative

solutions might yield better designs.

The level where synthesis is performed is important. When an expert manually synthesizes

a structural specification from a behavioral specification, some mental rechecking of the behavioral

specification is performed. Flaws or poor assumptions made in the behavioral specification are

sometimes found while the expert is exploring the solution space of the structural specification.

Synthesis, however, doesn't provide this opportunity to reflect on the original behavioral specifica-

tion. Thus, the flaws and poor assumptions in the behavioral specification are incorporated into

the final product.

Synthesis systems are generally based upon Boolean manipulation techniques. If the design

specification is not based on {0,1} then the Boolean manipulation techniques used in the synthesis

approach will not yield an implementation description that may be compared to the behavioral

specification. Assume that the behavioral specification for a given design is

out = (Xy V xz V y'Z). (1)
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A synthesis system would perform optimization on Eq 1 yielding the following transformation.

(xY V xz V y'z) i-* (xY V y'z) (2)

Through synthesis, the expression on the left of Eq 2 may be seen to be equivalent to the expression

on the right. The unannounced assumption made by the synthesis system in this case is that the

above expression is true for a Boolean algebra. However, should we choose the case where the set of

possible values used is {0,X,1} 2 great difficulty arises in generating comparable simulation results

before and after synthesis.

Shown in Figure 4 is an uncomplemented distributive lattice3 4 and a collection of operator

tables defined for {0,X,1}. The uncomplemented distributive lattice and the collection of operator

tables are not the same and differ through the interpretation of complement. For a true complement

to exist, the following system of equations must be satisfied (Rudea 74:3-4) (Donne 68:101).

uAu' = 0

uVu' = 1

A true complement does not exist for the operator tables since the system of equations cannot

be satisfied for u = X. Attempting to force a complement operation for {O,X,1} only succeeds in

generating problems in simulation. An example can be constructed to illustrate this problem.

For the previous transformation, Eq 1, assume z = z = I and y = X. The result for both

equations of the transformation would then be the following.

(XYvizVy'z) = 1 (3)

2
This set is from the current EIA modeling standards for VHDL (EIA 89). Such a set of values is used to perform

hazard analysis in CMOS circuits
3 A value system deqcribed in this manner is not unusual and was first proposed by Lukaiewicz in 1920

(Resch 69:22).
4 A discussion on lattices may be found in (Donne 68). In particular, a Boolean algebra is a complemented

distributive lattice (Donne 68:55-59,224-249). The relation between a Boolean algebra and the postulates that
define a complemented distributive lattice are stated explicitly in (Rudea 74:4).
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Figure 4. Lattice and Operator Tables for {0,X,1}.

(X v Y'Z) = X (4)

Eqs 3 and 4 have different results leading the user to believe that the synthesis tool has failed.

However, the result of synthesis using consensus to absorb the xz term is valid for a Boolean Algebra.

This illustration demonstrates the problem of comparing results through simulating a synthesized

structural specification from a behavioral specification when a many-valued logic system is used.

Simulation using a many-valued logic system is not the only problem encountered when

synthesis is used in Eq 2. The designer may desire to have the xz term included. Without the xz

term, a spike might be induced into a circuit when transitioning from the xy term to the y'z term.

Using synthesis in some situations may produce large combinational logic circuits with dangerous

transieiit responses to certain input stimuli.

Although there are problems with synthesis, its use is beneficial in some cases. In situations

where certain designs described by a hardware description language are easily synthesized, synthesis

can provide better hardware solutions than can humans. When working with large circuit designs,

humans can lose attention while optimizing a circuit. Synthesis tools, however, work as vigorously

15



to optimize the last portion of a circuit as they do the first part. Most synthesis tools also perform

some self-verification of the hardware they have generated, to help reduce the possibility of intro-

ducing errors. Synthesis requires reasonable human guidance and a verification system for proper

operation.

Verification Methods

As opposed to validation, verification is the process of proving compliance between one hard-

ware specification and another hardware specification. Verification methods are based on a sound

mathematical foundation. Methods for formal hardware-verification range from automatic

(Boyer 79) to manual (Gordo 89). The Boyer-Moore method performs most of its theorem proving

through induction, whereas HOL is open to theorem proving through many techniques. One of the

more common techniques of theorem proving in HOL is through rewriting of goals and dividing

goals into a conjunction of subgoals.

The capacity to perform formal hardware-verification is based upon the ability to express

hardware descriptions in a theorem form. Some formal hardware-verification systems require that

a description of the hardware be in a specification language. The specification language may either

be the language of the proof system or some hardware description language that can be translated

into the language of the proof system.

The relationships among the behavioral specification, structural specification, and layout

specification, are usually characterized as follows:

Structural Specification Behavioral Specification (5)

Structural Specification Layout Specification (6)
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Relation 6 is necessary to ensure that the actual hardware and documentation match explicitly.

Contrary to intuition', Relation 5 expresses the logical requirement that the structural specification

is within the domain described by the behavioral specification.

The implicative relation between a behavioral specification and a structural specification can

be shown through several examples. For the first example, assume the domain of discourse to be the

set of integers. Considering a behavioral specification, X2 = 25, and two structural specifications,

x= 5 and x = -5, we have

(= 5) =t (z2 = 25).

The equation (structural specification) x = 5 is a solution (implementation) of the equation (be-

havioral specification) x 2 = 25. In Appendix C is a digital-hardware example of the implicative

relation between several structural specifications and a behavioral specification.

Further information regarding formal hardware-verification techniques may be found in sev-

eral sources. An extensive survey of formal hardware-verification is in (Camur 88). Some of

the most commonly referenced methods include Higher-Order Logic (Gordo 89), Boyer-Moore

(Boyer 79), and TEMPURA (Moszk 86). A discussion on temporal logic approaches is presented in

(Galto 87). A tutorial for HOL has recently been published (Gordo 89). Furthermore, a theoretical

discussion of HOL may be found in (Gordo 88). A demonstration of how HOL is used in formal

hardware-verification may be found in Appendix C.

5 Those initially exposed to simulation as a form of design validation tend to see this relation as
Behavioral Specification => Structural Specification. This bias is brought about by the thought that whatever
stimulus-response patterns result from the behavioral specification must also result from the structural specification.
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Summary

The process of simulation is neither correct nor complete. A circuit may not match a design,

but simulation may lead the designer to believe the design is constructed in compliance with

its structural specification. Additionally, a circuit may comply with its structural specification,

but problems with the simulator paradigm may prevent demonstration of proper performance.

Despite these shortfalls, simulation is still necessary for generating test vectors for testing fabricated

components.

Synthesis is not always sufficient for guaranteeing correct designs and may produce unexpected

results. Thus, synthesis requires the use of formal hardware-verification to ensure the results of

synthesis are correct. In contrast to design validation, formal hardware-verification can verify a

design for all possible inputs and outputs in a tractable manner (Barro 84:438).

We have shown that a structural specification is a solution to a behavioral specification, but

not necessarily a unique one. Since a structural specification is a reflection of the actual hardware,

it must match the layout specification explicitly. Formal hardware-verification methods should be

used to show that the layout specification is equivalent to the structural specification. As a formal

method, logic extraction shows equivalence between the layout specification and the structural

specification.
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III. Logic Extraction, VHDL, and Transistor Netlists

A Survey of Logic Extraction

Logic extraction has been attempted by several researchers prior to this research. Previously,

logic extraction was viewed as simply a matter of matching a few subcomponents to a template

and replacing them with a single component; however, problems were encountered with component

connectivity when using this simple approach. Additionally, the size of the circuit that could be

extracted was less than 10,000 transistors in size.

An informal description of logic extraction through GES is first presented. Afterwards, de-

scriptions of previous approaches are provided. As each approach is discussed, the inherent problems

with each approach are identified.

Logic Extraction through GES Three functions are performed in the extraction process

shown in Figure 5. These three functions are identifying the subcomponents that form the com-

ponent, checking that internal nodes do not have external connections, and checking for internal-

external connection inconsistencies. By extraction, the appropriate components and interconnec-

tions are identified. When the components are identified, additional checks are necessary to ensure

that different variable labels contain different values'. Checking that the internal connections of a

component do not connect with another component external to the component being extracted is

important. From Figure 5, the node named INTERN "disappears" from the overall circuit once

the D-latch is extrActed. If the node named INTERN is connected to some other component

external to the D-latch, connectivity information is lost.

Prolog vs. Forward-Chaining Expert Systems Rule-based methods implemented in

forward-chaining systems like OPS5 (Spick 85), OPS83, or CLIPS (Yaros 89) suffer from two prob-

lems. The first problem is inherent to the extraction process. The second problem is inherent to

I Within Prolog. different variable labels are allowed to contain the same value. However, when using different
variable labels for hardware design, different electrical connections are implied.
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Figure 5. Logic Extraction.

forward-chaining systems. The types of forward-chaining systems that fall within the realm of this

discussion are shown in the pictorial representation of Figure 6. The forward-chaining system is

divided into parts. The first part consists of the rules. Each rule has a left-hand side, LHS, and a

right-hand side, RHS. The LHS is a set of conditions that must be met in order to carry out the

actions in the RHS. The working memory contains the facts and context of the forward-chaining

system. The context is a stack of all partially matched and fully matched rules. An iterative process

of matching, conflict resolution, and acting is carried out until there are no more fully matched rules

to act on. The conflict resolution portion of the iterative process determines which fully-matched

rule to act on.

Figure 7 is an example of what appears to be a lAID gate; however, an internal connection,

Int, to another component, COMP, suggests otherwise. Before extracting a component, its in-

ternal connections must be checked to ensure they are not connected to the external connections

of the component being extracted ("local" connectivity) and to ensure they are not connected to

another component ("global" connectivity). Once the component is recognized and extracted, the

internal node disappears, thus connectivity information is lost. Local connectivity is easy to check

within an extraction rule, since all of the connection information is available. Global connectivity

is more difficult to check. Tt is not readily apparent how rules in forward-chaining systems may
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LHS - RHS

Process Working Memory

1. Match

2. Conflict Resolution OR halt

3. Act

4. Go to step 1 Rules

Figure 6. Forward-Chaining System.

be constructed to solve the internal-global connectivity problem. Such rules for internal-global

connectivity checks are not addressed in (Spick 85) (Yaros 89).

A _ Ot B ICOMP I

In t_ _..

Figure 7. Possible NAND Gate.

Secondly, forward-chaining systems are best-suited for heuristic solutions to problems of an

intractable or diffuse nature. The "working memory" of an expert system is one element where

impact on performance is observed. Working memory contains both the facts (in this case, a

transistor netlist) and the context of the system (a stack of fully matched and partially matched

rules). A large number of additions or deletions of facts can result in costly memory management

overhead. Stored within the context of working memory is a list of matched and partially matched

rules. Having several rules governing component configurations from transistors among a fact-base
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of several thousand transistors can result in the context area of working memory exceeding the

capacity of the system. A CLIPS implementation of logic extraction (Yaros 89) developed along

the lines of an OPS5 implementation of logic extraction (Spick 85) demonstrated that a system of

several matching-rules (gate-types) and 2,000 transistor-facts exceeded 100 MegaBytes of available

memory during execution.

Aside from the large memory problems, it turns out that conflict resolution is of little im-

portance. The component netlist may be extracted simply by applying the rules sequentially. The

overhead involved in resolving conflicts between rules ready to fire is an unnecessary expense. Fur-

ther, the inability to directly control the rule-firing order makes the logic extraction process difficult

to fine-tune for efficiency in an expert system environment.

Prolog vs. 0tw ," Languages Prolog was chosen as the implementation language over

procedural langu:tges and Lisp for several reasons. The logic extraction process involves searching

and pattern matching. Prolog is naturally suited to searching and pattern matching. Expressing

the lgic extraction process in Prolog allowed for rapid-prototyping of ideas. Seventy lines of Prolog

(:ode, easily developed, implemented a portion of the extraction process being performed by a C-

code implementation of over 5,000 lines (Linde 88). Further, reliable Prolg implementations exist

today (Quint 88). Finally, there is an accepted standard for Prolog (Clock 87b).

Summary Work with logic extraction has been reported in (Spick 85) (Boehn 88). Other

work that performs comparisons of transistor networks to their original structural descriptions

(either an HDL or schematic) do so by graph-based methods (Ebeli 83) (Takas 88), rule-based

methods (Takas 88) (Papas 88), or other methods (Boehn 88) (Takas 88) (Spick 83). Though one

method does extract some timing information at the gate level (Boehn 88), none performs any

type of critical path analysis in conjunction with the extraction process. A report on critical path

analysis within the extraction process is in (Dukes 91a).
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The Representation of Hardware Structure Through VHDL

VHDL Syntax This section details the VHDL language constructs accepted by vhdl2ges.

Several examples of acceptable structural VHDL models are provided. The VHDL language con-

structs are taken from the Syntax Summary of (Dukes 91b:5). At a minimum, the VHDL descrip-

tion must contain the following.

entity identifier is
formaLport-clause
end entity-simple-name

architecture identifier of entity-name is
component identifier

locaLport-clause
end component;

begin
instantiationJabel

componenLname port-mapaspect
end architecture-simple.name ;

Below is an example of a VHIDL description conforming to the above description.

entity comp is
port (A : in bit);
end comp;

architecture structure of comp is
component sub.comp
port (A : in bit);
end component;

begin
sub-compO0 : subcomp port map (A);
end structure;

Additional VHDL language constructs supported are shown below.

signal identifier-list : subtype-indication;

alias identifier : subtype-indication is name;

All other VHDL language constructs are ignored.
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Properties of Structural VHDL There are several properties and relations expressed by

a structural VHDL description. Those properties and relations concern the component-to-entity

relation, properties of signal names, and properties of aliases. Further, there are the restrictions

that at least one signal must be in the port and there must be at least one instantiated component

in the architecture body.

The relation between the entity and its respective components is a one-to-many relation. This

relation is shown in Figure 8. Importantly, this relation is bidirectional in that an entity may be

decomposed into a collection of components or a collection of components may make up an entity.

In the case of logic extraction, the emphasis is on finding a collection of components that make up

an entity.

CT'

E

Cl

E = entity. C = component instantiation.

Figure 8. Relation Between an Entity and Components.

The port of an entity lists the signals through which the entity communicates to exterior

components. The port forms a boundary, isolating the interior components. The signals declared

in the declarative area of the architecture imply "wires" through which the components of the

interior of the entity communicate. Some important distinctions between signals of the port and
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signals of the architecture's declarative area arise. For clarity of the discussion, we will use signalse

to denote signals of the port and signalsa to denote signals of the architecture declarative area.

For the signals of signalsa and signals,, we will informally describe a logical prop-

erty called not_connccted(signalsa,signalse). We may also refer to the logical property

not-connected(signalsa, signalse) as not-connected/2 2 . The properties of not-connected/2

are as follows.

1. None of the signals of signals. may be a member of signalse.

2. Every signal of signals, is unique.

The two properties of not-connected/2 reflect the semantics of VHDL. The first property of

not-connected/2 enforces the requirement in VHDL that a signal may only be declared in the port

of the entity or in the architectural declarative part. The second property of not-connected/2

represents that fact that each signal declared in the architectural declarative part represents a

unique wire. However, the signals of the port map may be interconnected when the component is

instantiated at a higher level in a VttDL structural specification.

As for the visibility of the signals of signalsa, a property f ind-anomaly(componeit, signals,,)

will be defined. The property, find-anomaly(component, signals,), explicitly represents the fact

that none of the signals of signals, may be connected to components outside the entity under

consideration. In essence, find-anomaly(component,signals.) expresses the confinement of the

scope of the signals of signals, to the interior of the architecture of the entity under consideration.

Implicitly, the signals of signalse may be seen on the outside and inside of the entity.

Aliases in VIIDL provide a basis for renaming signals of signals,. Any time an alias is

encountered, it is replaced with the appropriate signal of signals or signals,.

2
A Prolog program is identified by its fmnctor -tnd arity as functor/arity. The functor is the name of the Prolog

program and the arity is the number of parameters passed to the Prolog program.
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Transistor Netlist Representation

GES does not extract components directly from a layout specification. GES performs logic

extraction on a transistor netlist derived from a layout specification. The transistor netlist may

be generated from a layout specification from one of several CAD tools that already exist for

this purpose. 'I his section describes the input format for a transistor netlist. Also presented is a

mapping from a transistor-netlist format produced by a CAD tool to the transistor-netlist format

used for logic extraction.

Generating Transistor Netlists from Magic One form for a transistor netlist is that

described in (Terma 86). This form was chosen since it was derived from the mask layout form of

magic used in (Calif 86). One process of generating the transistor netlist begins in magic by using

the :cif command. The :cif command in magic produces a mask layout file in CIF 3 . Afterwards,

mextra reads in the CIF file and produces a transistor netlist file. The record format for a transistor

is

type gate source drain length width xpos ypos

where type is one of e, p, or n for enhancement mode transistor, p-type transistor, or n-type

transistor, respectively. The second through fourth fields, gate, source, and drain, describe three

of the four terminals of the MOS transistor used. The bulk (or substrate) is assumed to be biased

correctly and is not included. The fifth and sixth fields, length and width, describe the channel

length and channel width of the MOS transistor. The seventh and eighth fields, xpos and ypos,

are the location coo-dinates of the transistor.

An alternate route for extracting a transistor netlist from a magic layout also exists. The

:extract command in magic creates a hierarchical form of the layout, in .ext format, currently

'CALTECH Intermediate Format (CIF) is one layout format used. Another common layout format is GDS II.
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residing in magic. A series of extraction files is created that reflects the cell hierarchy used in magic.

A tool called ext2sim is then used to generate the transistor netlist form.

Converting Transistor Netlists to Prolog Clause Form If the mextra tool is used on

a CIF file, the transistor netlist will be created with the n-type and p-type transistors described

as e and p for their types, respectively. If the ext2sim tool is used, the transistor netlist will be

created with n-type and p-type transistors described as n and p for their types, respectively. Thus,

a transistor generated from meztra as

e a_XIORc#17 1520 GID 300 1200 706200 -20550

would appear in Prolog clause form as

n(nAXNORC17, n1520, ngnd, 30k., 1200,706200, -20550).

A transistor generated from ext2sim as

p 20/4_1/A-in-nand Vdd 20/4_1/probe 300 1200 12172 101

would appear in Prolog clause form as

p(n204-lAIN-NAND, nvdd, n204- PROBE, 300,1200,12172, 101).

The general transistor netlist format in Prolog is showr- below.

typep(gatep, sourcep, drainp, zpos, ypos).

The following mappings are used:

type -- typep
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n n- f

e i*n

gate I.gate p

node '*nNODE

Vdd I..nvdd

GND i*ngnd

Gnd i*ngnd

source -*source p

node -*nNODE

Vdd ' nvdd

GND F-+ ngnd

Gnd -*ngnd

drain drain p

node i-+ nNODE

Vdd i--* nvdd

GND i*ngnd

Gnd i4ngnd

where

node =letter-.number.specialcharacterletter.nulmber-.specialcharacter}

letter-jumber-specialcharacter ::= letter I number I specialchaxacter

letter :=upper-case-letter I lower-case-.letter

and

nIODE =n{ Euxderlinelupper..case-.letter-number}

upper-case-letter-.number ::= upper..case.letter I number

The set specialcharacter = {4, #,%, *,()/[],"' is not necessarily a complete one since

magic allows labels to consist of a large number of different special symbols. The process node
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nNODE drops specialcharacter and translates lower- cas e-letter to upper-case-1ett er. The

mapping to upper case letters is necessary to overcome the case sensitivity of magic and Prolog

when generating case-insensitive VHDL code.
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IV. A Formal Approach to Logic Extraction

The extraction process is a method of proving and determining the existence of higher level

constructs from existing lower-level ones. By seeing a relation between component definitions and

extraction rules, we may demonstrate that the extraction process is a form of hardware-verification.

In fact, the highest level Prolog rule may also be the final goal to be achieved in an extraction process

whereby only one component is left over after the entire extraction process has run its course.

Past attempts at logic extraction have failed in their expression of the essence of logic extrac-

tion. Ensuring that certain properties (i.e., protecting local and global connectivity1 ) exist has not

not been addressed. Had a formal approach to logic extraction been previously attempted, these

properties may have been discovered.

A formal definition of logic extraction will be presented in terms of logic-programming. Af-

terwards, the important properties of a component's description as they relate to VHDL will be

proved. Finally, properties concerning correctness, completeness, and guaranteed termination will

be presented.

Defining Lists

As a matter of convenience, a logic-programming representation in Prolog is used to describe

the logic extraction system. Using Prolog is proper for describing formal methods and executing

them (Wing 90b:15). Therefore, developing a unique syntax and semantics for the logic extrac-

tion system is unnecessary. The structures that are used are assumed to be finite. The various

components to be used for logic extraction will be described first.

A property called notconnected(signals., signalse) was stated previously in Chapter 3. Re-

iterating the definition for this property we have,

'The discussion on local and global connectivity is in Chapter 3.
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not-connected(signals,, signalse) 4- None of the signals of signals. may be a
member of signalse. Every signal of signals0 is unique.

Prior to presenting a Prolog definition for not-connected/2 the representation for signalsa and

signals, should be described.

Previously, signals, was described as the signals of the port and signalsa was described as

the signals of the architecture. To make signals. and signals, useful to Prolog, we will choose a

list representation for both. Furthermore, each signal of signals. and signalse will be a Prolog

atom2 . In Prolog, notconnected/2 may be expressed as

notconnected([SignallResetOfSignalsA],SignalsE)
not.ember(Signal, ResetOfSignalsA),
not.member(Signal, SignalsE),
notconnected(ResetOfSignalsA,SignalsE).

not.connected( [] ,).

On the surface, it appears that not-connected/2 is satisfactory; however, an additional

stipulation exists requiring that each signal of signals. and signals, be a Prolog atom. The Prolog

program not-connected/2 does not guarantee anything is done to protect this original stipulation.

This being the case, there is no guarantee that not-connected/2 will do what it is intended to

do.

At this point, there are some desired properties of a Prolog program, "P, that should be

determinable. These properties include correctness and completeness with respect to the in-

tended meaning, M. The meaning of V, M(P), "is the set of ground unit goals deducible from

P" (Sterl 86:15,82-83). Thus, P is correct if M(P) C M. Further, P is complete if M C M(P).

Finally, P is correct and complete if M = M(P).

Correctness and completeness are not the only properties of P that are of interest. We also

wish to be able to determine whether "P terminatcs. For this property, a termination domain

2 A signal in VHDL has a name that corresponds to the meaning of atom in Prolog. The only difference is that
Prolog is case-sensitive; whereas, VHDL is case-insensitive.
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of P must be defined. "A termination domain of a program P is a domain V such that every

computation of P on every goal in D terminates." (Sterl 86:83) Further, a "domain is a set of

goals, not necessarily ground, closed under the instance relation." (Sterl 86:83) Finally, "A is an

instance of B if there is a substitution 0 such that A = BO." (Sterl 86:5)

As an illustration to what is meant by a termination domain V, consider the Prolog program

for list/i.

list(I]).
list([HIT]) :- list(T).

The termination domain for list/i is represented by *DVj,2 . We would like the termination domain

Vji,t to include the goal list X). Having list (X) in Vjjit would mean that every instantiation of

X would be in Viist; however, the goal

?_ list(X).

results in an infinite number of solutions.

In order to implement list/l, some restriction on D:it must be adopted. This has the effect

of rendering the program list/i fragile. Tail-recursive programs that have the same form of list/i

require special handling. Consider the following "general" structure for a Prolog program similar

to list/i

C(.Pi D.. p ,[].
c(Pi, ... , P, [HeadTail])

goali,

goal,,
c(SubPj,... , Sub P, Tail).
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where o is the number of parameters passed to the program and m is the number of goals in the

clause body of the program. A goal goal, may be defined to restrict the form [HeadlTail] may

take so as to guarantee a larger termination domain.

A restriction on the structure of the list is added to list/1 to ensure termination over a larger

1). For this purpose we will define a meaning Maiomji, , atom.list/l, as a definition for the list

structure to be used.

atom-list(List) 4- Either List is empty or each element of List is an atom.

In Prolog, the program Patoit, appears as

atom-list (]).
atom-list ([Head iTail]) -

atom(Head),
atom-list (Tail).

The Prolog program Patom.list makes use of the built-in Prolog function atom/i. Anything meeting

the requirements of atomlist/1 will either be the empty list [I or a list whose elements are atoms,

and every list comprising only of atoms will meet the requirements of atomlist/1. Further,

atom-list/1 will terminate for anything supplied to it as a proper Prolog parameter under the

assumption that finite structures are used.

A list conforming to atomilist/1 will either be 0 or be in the form [e. .. , ell where

each e,, I < i < n, is an Atom. For the case of atom-list([]), we find that the Prolog program

Pato,,mjt is consistent because it is satisfied by [I. For the case of [ea,en-.,...,e1 i where each

e,, 1 < i < n, is an atom we have the following. If we assert the goal, atom-list([en, e-1,... -el),

we find the first clause is not satisfiable. However, the second clause is satisfiable. Performing an

expansion on the second clause of atomlist/l
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atom-list([e. I[e.-I,, ell]) :
atom(en),
atom..list([e,_ ,, e I)

Assuming atomJist([ei,_l.. ,el]) true and knowing that atom(e,) is also true we can see that

through induction, atom-list([e,e_.... , el]) is accepted by ..tjt. Therefore, Matomjit C

M (Pato,_r.jat)-

To show that Pato,,.jj,, is correct, first consider the base case of atomilist([]). This is

acceptable to Pato,,-list. Assuming that atom-list(X) is asserted, through unification the result

is still only atomiist([]). Nothing else is acceptable to the first clause of atomilist/1. Assume

now that for [e,,,e,- .... ,el] some e, is not an atom and that atomJist([e._l,..., el]) succeeds.

Thiz, would mean that atom(ei) is true which would be a contradiction. Thus, M(Patomjlst) C

Matom jsit showing that the program PatomAst is correct and complete.

By adding atom/1 to form Patomjist we have increased the previous termination domain

Vut. The termination domain Datomise may now include any acceptable Prolog structure. In

order to show that the program Patom-jist terminates for Vatom-iat we first consider an empty

list 0. In the case of the empty list, the first clause of atomlist/1 is satisfied. Attempting to

satisfy the second clause results in failure and terminates the execution of atomilist/1. In the

case of an acceptable list of size greater than an empty we have [ e ... ,ex]. The second

clause of atom.Jist/1 is tail recursive on a list that decreases in size of one with each invocation of

atomlist/1. The head starts with a list n elements long. It then invokes itself with a list of size

n - I until the empty list, [I is left which is terminated through the first clause of atom..ist/1.

For some list failing to conform to atom-list/1, the case of a list [e,,e, _,. . ,el] is consid-

ered where some ei is not an atom. This case may occur where ej is a variable, list, or compound

structure. For e,, atomlist/1 would fail at its (n - i) + 1 invocation. Since no other clauses of

atom-list exist that might accept ej, the n - i invocation fails. All invocations up to the n - i

invocation also fail and terminate.
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The program Patomji,t can be used as a type-checking routine to guarantee conformance of a

list to the structure defined by atomilist/1. This guarantee is very important in that all programs

whose termination domain is restricted to those structures defined by atomJist/1 may be used

after atom-list/1 with the guarantee that the structure used is within their termination domain.

Prolog programs, Pc, of the form,

c(_P,,...-P., [)

c(P .... , P., [HeadmTail)
goali,

goal,
c(SubP,... , SubPo, Tail).

fall into this category provided goal1 ,. .. , goal,, can be guaranteed to terminate.

The original Prolog program for not-connected/2 can be rewritten to use atomilist/1.

not-connected(SignalsA,SignalsE) -

atom-list(SignalsA),
atom.list(SignalsE),
not._ connected_sub(SignalsA,SignalsE).

notconnected_sub() ,_).
not_connected_sub([SignallSignalsA] ,SignalsE)

not-member(Signal, SignalsA),
not_member(Signal .Signal sE),
not_ connected_ sub(SignalsA .SignalsE).

The program atomlist/1 is used as a type-checking mechanism to ensure that parameters passed

to not-connected/2 are in an acceptable form. Without atomist/1, not-connected/2 would

have to have its termination domain restricted. The Prolog program not-connected.sub/2 is of

the form described by the program P,. The termination domain DnoLconneetd.jub is guaranteed

by atomJist/1, therefore, we can be assured that it will terminate provided not-member/2

terminates. All that is left is to define not-member(Signal, SignalList).

The property, not-member(Signal, SignalList), may be defined in the following manner.
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not -member(Signal, SignalList) 4 Signal is not a member of SignalList.

The foil-wing is a Prolog definition for not-member(Signal, SignalList).

not-member(_, []).
not-member(lode, [HeadiTail])

Node \== Head,
not _member (odeTail).

The Prolog program not-connected-sub/2 falls within the form of P,. When used within

not-connected-sub/2 its termination domain is also restricted by atom-list/1. The Prolog pro-

gram not-member/2 can be shown to be correct and complete in the same manner as atom-list/1.

Finally, to ensure that each component of a logic extraction rule is unique, the location

information from the layout specification is used. The location information is usually in cartesian

coordinates in magic and will be assumed so. Further, the coordinates will be integers. A collection

of logic programs to ensure uniqueness is shown below.

coordinate-list (0).
coordinate-list([[X,Y] lRestOfCoordinates])

integer(X),
integer(Y),

coordinate-list(RestOfCoordinates).

unique.component (E).
unique-component([X,Y] ITail])

not-member( EX ,Y) ,Tail),
unique-component (Tail).

The logic program coordinate/ist/1 is constructed in the same fashion as atom-list/1. The

logic program coordinatelist/1 provides a type-checking mechanism for unique-component/1

thereby ensuring termination. The logic program not-member also provides additional service

without changing its meaning.
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Template for Logic Extraction

In this section, the general template for defining a logic extraction rule is presented. In

keeping with the description of a structural VHDL description given earlier, the logic extraction

rule will ensure the outlined properties are kept. However, the procedural aspects of Prolog must

also be considered so that extraction may be performed in an automated fashion. Accordingly, six

procedural steps are performed in the order indicated.

1. Identify the component from its lower-level components.

2. Ensure that the identified lower-level components are unique.

3. Check that the values of internal nodes do not match other nodes.

4. Delete the lower-level components from the component netlist.

5. Add the newly found component to the component netlist.

6. Check to see if there are more lower-level components.

Step 1 must occur first, step two must occur second, step three must occur third, and step 6 must

occur last; however, the order of steps 4 and 5 is not important.

The general template for forming a Prolog extraction rule is:
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head :-
matching-goali,

matching-goai I,
coordinate~list([[Xi, Yj],..., [X., Y.1]),
uniquecomponent([[X, Y1],...., [X. I Y-]]),

not-connected(Signals., Signalse),
retract-goali,

retract-goain,
find-anomalyiist(head(argument-iist),Signalsa),
asserta(head( argument-list)),
fail.

head.

Each of the coordinates used by coordinateJist/1 and unique.component/i are derived from

each of the matching-goali, where 1 < i < n. A discussion of find anomaly-list/2 is provided

later in this chapter.

Currently, the logic extraction process is divided into two parts. The first part, called Level-i,

is a collection of rules for translating transistors of a particular technology to logical components.

The second part, called Level-N, is automatically generated (Dukes 91b) from VHDL descriptions

using vhdLparser (Reint 90) to translate VHDL descriptions into Prolog logic extraction rules. A

Level-I rule-set for C M1OS and a Level-1 rule-set for the Vitesse GaAs process have been developed.

The Level-i rule-set for the Vitesse GaAs process has not been extensively tested. The CMOS

Level-i rule-set contains rules for extracting inverters, transmission gates, clocked inverters, N-

input 1AID gates, N-input NOR gates, and three types of EXCLUSIVE-OR/EXCLUSIVE-IOR gates.

An additional rule for D-latches is also included.

Definitions for Using CMOS Level-i Rules

The level-i rules have to be generated by hand, though it is possible (but not desirable)

to use vhdl2ges (Dukes 91b) to generate level-i rules from a structural VHDL description using
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transistor-type components. Since the drain and source of a CMOS transistor are intercha'ngeable

in their abstract view, some additional definitions are adopted to accommocaate the abstract view.

In this section, an explanation and examples of how Prolog handles abstraction are presented. For

the representation of transistor-facts, we adopt the following definitic,..

Definition 1 p(G, D, S, W, L, X, Y) is a predicate that describes a p-type MOS transistor with a
gate G, drain D, source S, channel width W, channel length L, x-location X, and y-location Y.

Definition 2 n(G, D, S, W, L, X, Y) is a predicate that describes an n-type MOS transistor with
a gate G, drain D, source S, channel width W, channel length L, x-location X, and y-location Y.

The arity (number of arguments) of seven for both the p and n predicates assumes that the phys-

ical bulk (or substrate) connection of the MOS transistor is biased correctly. Furthermore, the

description adopted is for p-type and n-type enhancement mode MOS transistors. Typical p-type

and n-type MOS transistors in Prolog appear as

p(nINPUT,nvddnOUTPUT.3,6,1254,387).
p(nADDINnAINPUT,nASELECT,3,6,39887,-3091).
n(nIIPUT,ngnd,nOUTPUT,3,6,1260,387).

In the physical sense, the actual drain and source are determined by the biasing of the

device. In the abstract sense (i.e., magic and extract), the drain and source are freely interchanged.

Implementations of the p-type and n-type transistors in MOS layout freely interchange the drain and

source (Weste 85). In order to express this abstract aspect and to suppress information concerning

length and width, some further definitions are adopted.

Definition 3 The predicate 'ptrans' is defined in terms of the predicate 'p' by the implication

VG, D, S, X, Y [(p(G, D, S, - -, X, Y) V p(G, S, D. -, -, X, Y)) =:, ptrans(G, D, S, X, Y)].

Definition 4 The predicate 'ntrans' is defined in terms of the predicate 'n' by the implication

VG, D, S, X, Y [(n(G, D, S ..... X, Y) V n(G, S, D, -. -, X, Y)) #. ntrans(G, D, S, X, Y)].

The underscore indicates unnecessary information. The Prolog rules to describe Definitions 3 and

4 are
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ptrans(G,D,S,X,Y) "-
p(G,D,S..... X,Y).

ptrans(G,D,S,X,Y) :-

p(G,S,D...,..,X,Y).

ntrans(G,D,S,X,Y) :-

n(G,D,S,...,..X,Y).

ntrans(G,D,S,X,Y) .-
n(G,S,D,.....X,Y).

Assuming that ptrans/5 and ntrans/5 exist in a file called trans.pro on a UNIX system

and that Quintus Prolog is also installed on the same system, ptrans/5 and ntrans/5 may be

loaded into Prolog in the following manner.

% prolog

Quintus Prolog Release 2.2 (Sun-3, Unix 3.2)
Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.

1310 Villa Street, Mountain View, California (415) 965-7700

1 ?- compile(['trans.pro']).
[compiling /people/dukes/class/trans. pro...)

[trans.pro compiled 0.267 sec 564 bytes]

yes

The system prompt is %. The Prolog prompt is I ?- . The file, trans.pro, was lo-ded into

Prolog using the Quintus Prolog procedure called compile/i. The Prolog function, compile/i,

compiles the contents of the file, trans.pro, into the current Prolog session.

Assume the following transistor netlist exists in a UNIX file called intrans.pro.

p(nINPUT,nvdd,nOUTPUT,3,6,1254,387).

p(nADDIN,nAIIPUT,nA-SELECT,3,6,39887,-3091).
n(nINPUT,ngnd,nOUTPUT,3,6,1260,387).

The transistor information would be read into Prolog in the following manner.
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I ?- C'intrans.pro'].
[consulting /people/dukes/class/intrans.pro...)
Eintrans.pro consulted 0.100 sec 564 bytes]

yes

All of tie p-type transistors may be listed by querying Prolog in the following manner.

I ?- p(G,D,S,W,L,X,Y).

G = nIEPUT,
D = nvdd,
S = nOUTPUT,
W =3,

L =6,

X = 1254,
Y = 387 ;

G = nADDIN,

D = nAIIPUT,
S = nASELECT,

W =3,

L =6,

X = 39887,
Y = -3091

no

I ?- halt.

[ End of Prolog execution )

The upper case letters, G, D, S, W, L, X, and Y, designate variables to be satisfied by Prolog. The

; (semicolon) is used to request further information from the transistor database that satisfies the

request. Otherwise, a carriage return not preceded by a ; would have terminated the search. The

halt/0 predicate tells Prolog to terminate and return to the system prompt.

Assume now that the transistor netlist consists of the following components.

p(nINPUT,nvdd,nOUTPUT,3,6,1254,387).

p(nINSTATE,nNOTINSTATE,nvdd,3,6,1254,387).

p(nADDIN,nAINPUT,nASELECT,3,6,39887,-3091).

n(nINPUT,ngnd,nOUTPUT,3,6,1260,387).

41



Assume also that we are interested in finding transistors with nvdd on either the drain or source

of a p-type transistor. The objective may be accomplished in one of two ways. The first method is

to express two queries to Prolog using

I ?- p(G,nvdd,SW,L,X,Y) ; p(G,D,nvdd,W,L,X,Y).

In the above example, the ; is used to logically OR the two queries. The result of the two queries

is displayed below.

% prolog

Quintus Prolog Release 2.4 (VAX, Ultrix 2.0-2.2)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

I ?- ['intrans.pro'].
[consulting /people/dukes/class/intrans.pro...]
[intrans.pro consulted 0.167 sec 880 bytes]

yes
I ?- p(G,nvdd,S,W,L,X,Y) ; p(G,D,nvdd,W,L,X,Y).

G = nINPUT,
S = nOUTPUT,
W =3,

L =6,

X : 1254,
Y = 387,

D = _149

G = nINSTATE,
S = _55,

W =3,

L =6,
X = 1254,

Y = 387,
D nNOTINSTATE

no
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However, the Prolog rules stated in ptrans/5 will accomplish the same task, as shown in the

following:

% prolog

quintus Prolog Release 2.2 (Sun-3, Unix 3.2)
Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

1 ?- compile(['trans.pro']).
[compiling /people/dukes/class/trans.pro...]
(trans.pro compiled 0.250 sec 564 bytes]

yes
I ?- ['intrans.pro'].
[consulting /people/dukes/class/intrans.pro...]
[intrans.pro consulted 0.100 sec 688 bytes]

yes
I ?- ptrans(G,nvdd,S,X,Y).

G = input,

S = output,
X = 1254,
Y = 387 ;

G = instate,
S = notinstate,
X = 1254,
Y = 387

no
I ?_

This example demonstrates that rules using transistors may not be concerned with the interchange-

ability of the drain and source. Assuming that circuit function, not timing, is of primary interest,

unnecessary information (e.g., gate width and length) may be easily dropped when performing

extraction.

Guaranteeing Termination for Logic Extraction

For the purpose of this discussion, the following representation will be used.
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* LE(Case) will represent the Case under consideration for logic extraction.

" Ptermnate will represent the property of termination being true.

Further, there are only a finite number of facts in the facts data base.

Several cases will be considered. In all cases, m and n will represent natural numbers excluding

zero. The first case addresses the possibility of replacement of m components by n where m < n.

The second case addresses the replacement of m components by n components where m = n.

Finally, the last case addresses the replacement of m components by n components where m > n.

For the discussion of logic extraction, not-connected/2 and find.anomaly/2 are assumed to

terminate.

Case 1. The first case to discuss deals with the replacement of m components by n compo-

nents where m < n. What we want to show is that

LE(m < n) =>- Pte,minate.

Logic extraction rules constructed through GES only assert a single component. Thus, n = 1;

however, n > m by our original assumption and m > 1 meaning that n can never be 1. Therefore,

LE(m < n) is false and the assertion for case 1 is trivially proven.

Case 2. The second case to discuss concerns the replacement of m components by n com-

ponents where ?n = n or

LE(m = n) = Pe,,,miatj.

There are two subcases to be proven. These cases are3

((m > 1) A (n > 1)) !- LE(m = n) := Pterminate

3 A discussion on the form r !- a is in Appendix E.
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and

((m = 1) A (n = 1)) I- LE(m = n) =:: Pterminage.

Rewriting the first subcase, we have

((m > 1) A (n > 1)) I- ((m > 1) A (n > 1)) =V (LE(in = n) Pterminate).

From Case 1 we know that n has to be 1. Therefore, (n > 1) is false and this subcase is true.

For the second subcase of

((m = 1) A (n = 1)) 1- LE(m = n) =>. Perminate

the value for m is valid as well as n. Thus, the extraction rule must be examined. The following is

a representation of a logic extraction for the case where the component being matched is the same

as the component being asserted on the component data base.

C :-

c(P,. . P
not-connected([ ],[P1 ... , Po],
retract(c(P, ... ,

find-anomalylist(c(Pi,. . .,o),

asserta(c(P.. P)),
fail.

C.

Both notconnected/2 and find -anomaly-list/2 terminate immediately due to [I. The remain-

der requires an understanding of fact matching and asserta/1.

In Prolog. matching of facts starts at the head of a facts data base. Upon each retry, the

succeeding fact is looked up. Prolog does not return to a preceding fact. In this fashion, a data base

of facts has a head, a tail, and a progression from head to tail. The Prolog procedure asserta/1

places a fact before the head of a fact data base. By modifying the facts data base in this fashion,
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a newly asserted fact will not cause infinite backtracking through the facts data base since it is

considered a preceding fact. Furthermore, the facts data base is assumed to be finite. Therefore,

by using asserta/1 we are guaranteed termination.

For the case where the matching goal and the fact being asserted are not the same, the process

is trivial. Each time a goal is matched, a new component of a different name is asserted. This

process continues until all facts are retracted. The rule then terminates.

Case 3. The last case to discuss concerns the replacement of m components by n components

where m> n or

LE(m > n) * Pte,,nte.

From case 1, we know that n must be 1. Since m > I by substitution, we see that the number

components is decreasing rather than ever increasing. At worst, the logic extraction process will

continue until only one component is left.

Design Rule Checking

The extraction methodology previously described has only been concerned with extracting

normal circuits. However, we cannot assume that the circuit to be extracted is free from design

errors. Since errors may exist in a design, we must be prepared to find them. These errors occur

because the external interconnections of a component are configured in an inconsistent condition.

In this section, the problem of identifying these errors will be discussed.

Identifying External Design Errors The CMOS designs described earlier were based on

a design style of a particular designer or group of designers. Just as CMOS designs are based on

a design style, so too are design errors. A few of the types of design errors possible are shown in

Figure 9. It is important to point out that the following circuits are considered to be errors because

they are not normally used in the design of a VLSI circuit.
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vdd vdd vdd vdd vdd
out draindri

outn dj d nd source source

gnd grid grid gid grid

(a) (b) (c) (d) (e) (M

Figure 9. Some Transistor-Level Design Errors.

Subfigures a and b of Figure 9 typify a dangerous circuit. This type of design error may

result from one of several actions on the part of the layout system used. If plowing or some other

form of circuit rearrangement is being performed, it is possible to connect the terminals of the

transistor in the fashion shown. During layout in magic, routing over subcells with metal layers

that accidentally contact the same layer of lower subcells may also cause this problem. In either

case, the result is a circuit that, when turned on, will cause a short-circuit between Vdd and GND.

The physical nature of such a circuit is not the only concern in Subfigures a and b of Figure 9.

Assuming for discussion that we were only concerned with showing

Implementation =:: Specification

the result of Subfigures a and b could lead to an invalid conclusion. Essentially, the resulting

equation from such an error might be

FALSE =. Specification.

The specific problem of connecting Vdd and GND at the transistor level in HOL has been raised by

(Gupta 91:20). The problem is generally referred to as "false implies everything" (Camil 86:22). A
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false antecedent can lead the naive verification method to conclude an implementation meets a spec-

ification. Therefore, checking for such errors can reduce occurrences where improper conclusions

about hardware might be reached.

The circuits in subfigures c and d of Figure 9 are a little less destructive than the circuits

discussed earlier. However, they may indicate design errors. These circuits may be easily replaced

by a metal line connected to Vdd for subfigure c or GND for subfigure d. Even though these circuits

may be caused by the problems indicated for subfigures a and b, they may also be the result of

tying inputs to arrays of standard cells high or low. Subfigures e and f of Figure 9 demonstrate

another possible design error. As with the circuits in subfigures c and d, their creation may be

accidental or incidental. The following "error" definition is offered.

Definition El VIn, Out, Drain, Source,

1. ptrans(ln,vdd,gnd) is an error;

2. ntrans(ln,vdd,gnd) is an error;

3. ptrans(gnd,vdd,Out) is an error;

4. ntrans(vdd,Out,gnd) is an error;

5. ptrans(vdd,Drain,Source) is an error;

6. ntrans(gnd,Drain,Source) is an error.

Recognition of design flaws is not limited to single transistors. Erroneous designs consisting

of groups of transistors may also occur. Figures 10 provides examples of designs that may be

considered design errors. For these structures, another "error" definition may be considered.

Definition E2 VPg, Ng, In, Out,

1. invZ(Pg,Pgln,Out) is an error;

2. invZ(PgNg,ln,in) is an error;

3. tgate(Pg,Pg,ln,Out) is an error;

4. tgate(PgNgln,ln) is an error;

5. inv(ln,ln) is an error.
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Figure 10. Some Gate-Level Design Errors.

The list of errors included in Definitions El and E2 is not complete. For some designs, some of

the enumerated errors may not be errors at all. Therefore, definitions for design errors are declared

within the domain of the design style under consideration.

Prolog Implementation for Identifying External Design Errors This section de-

scribes two methods for using Prolog to identify design errors. The first method described is an

interactive one where the user provides statements to be satisfied by Prolog from the component

database. The second method described allows the user to specify a list of Prolog rules that may

be stored in a file and executed at a later time.

Definitions El and E2 designate certain component configurations to be erroneous. Using

Prolog interactively, these errors may be identified easily. The following is a demonstration of how

the component database is examined for the occurrence of the first type of error in Definition El.
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I ?- ptrans(In,nvddngnd,X,Y).
In = n20-O24-14A-BAR,

I = 5722,
Y = 141 ;
In = n20-O24-13A-BAR,

X = 5722,
Y = 506 ;
In = n20-O24-12A-BAR,

X = 5722,
Y = 798 ;
In = n20-024-11A-BAR,

X = 5722,
Y = 1017

Notice the use of the two additional fields, X and Y. These fields contain location information that

may be used to find the errant components. Through the use of Definition 3, we were able to ask

Prolog to identify those transistors that satisfied one of the design error types in Definition El. We

may also perform the same query for higher level components as shown below.

?- tgate(Pg,Ng,InIn,X,Y).

no

I ?- tgate(Pg,Pg,In,Out,X,Y).
Pg = n120typeIIId_4XOR,

In = n12_OtypeIIId_4COUT1,

Out = n12_0typeTTlb_1SCOUT1,

X = -306,
Y = 97;
Pg = n12_0typelIIb_15X01,
In = n12_OtypeIIlb-15COUT1,

Out = n12_OtypeIIIaI4COUTI,

X = -306,
Y = 170
Pg = n12_OtypeIIlc9OR,
In = n12_OtypeIIlc_9COUT1,

Out = n12_OtypeIIlb_14COUT1,

X = -290,
Y = 316

In the previous example, the component database was queried for the existence of any trans-

mission gates that met condition 4 of Definition E2. In this case, no transmission gates were found.

However, when Prolog was queried for the existence of transmission gates that violated condition

3 of Definition E2, several instances were found and reported.
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Design errors may also be found through the establishment of Prolog rules prior to perform-

ing duplicate transistor reduction and extraction in the case of Definition El. Furthermore, the

extraction process may be performed after extraction using Level-i rules to identify components

that satisfy to Definition E2. The following is an example of a rule used to find a design error

identified in Definition El.

/* Error type I */
find-error •-
ptrans(G,nvdd,ngnd,X,Y),
write('Bad trans, '),vrite(ptrans(G,nvdd,ngnd,X,Y)),
write(': removed'),nl,
remove.p(G,nvdd,ngnd),
fail.

/* Error type 2 */
find-error •-
ntrans(G,nvdd,ngnd,X,Y),
write('Bad trans, '),write(ntrans(G,nvdd,ngnd,X,Y)),
write(': removed'),nl,

remove-n(G,nvdd,ngnd),
fail.

/* Error type 3 */
find-error .-
ptrans(ngnd,nvdd,S,X,Y),
write('Straight wire, '),vrite(ptrans(ngnd,nvdd,S,X,Y)),
write(': removed'),nl,
removep(ngnd,nvdd,S),
fail.

/* Error type 4 */
f ind-error •-
ntrans(nvdd,ngnd,S,X,Y),
write('Straight wire, '),write(ntrans(nvdd,ngnd,S,X,Y)),
write(': removed') ,nl,
remove.n(nvdd,ngnd, S),
fail.

/* Error type 5 */
f ind-error -
ptrans(nvdd,A,B,X,Y),
write('Open connection, '),write(ptrans(nvdd,A,B,X,Y)),
write(': removed') ,al,
remove-p(nvdd,A,B),
fail.

/* Error type 6 */
find-error •-
ntrans(ngnd.A,B,X,Y),
write('Open connection, '),write(ntrans(ngnd,A,B,X,Y)),
write(': removed'),nl,
removen(ngndA,B),
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fail.
f ind-error.

Notice that f ind..error. is listed last. This is to provide a successful outcome when all of the

previous clauses fail.

The following Prolog rules are used to identify design errors that conform to Definition E2.

I ind-more-a.rrors :-
clk..invCP,PIn,Out,X,Y),
writeC'Screwy clk-inv, '),vriteclk-.inv(P,P,In,Out,X,Y)),
write(': reuoved'),ul,
retract~clk-invCP,P,In,Out ,X,Y)),
fail.

find-.more-o.rrors-
clk-.inv(Pg,Ig,Bad,Bad,X,Y),
write('Oscillating clk-.inv, '),write~clk-.invPg,Ig,Bad,Bad,X,Y)),

retractclk-.invCPg,Ig,Bad,Bad,X,Y)),
fail.

find-moreeorrore
tgate(P,PIn,Out,X,Y),
write('Screvy tgate, '),vrit.(tgate(P.P.InOut,X,Y)),
write(': removed'),nl,
retract~tgate(P,PIn,Out,X,Y)),
fail.

find-more-errors
tgateCPg,Ig,Bad,Bad,X,Y),
writeC'Worthless tgate, '),vrite~tgate(Pg,Ig,Bad,Bad,X,Y)),
write(': removed').nzl,
retract~tgateCPg,Ig,Bad,Bad,X,Y)),
fail.

I ind..uore-.errors-
invCBad,Bad,XY),
writsC'Oscillating inv, '),vrite~inv(flad,Bad,X,Y)),
irrite(': removed'),nl,
retract CinvCBad,BadX,Y)),
fail.

find..more-errors.

Identifying Internal Design Errors The Prolog rule, find .anomaly-Iist/2 is used to

identify "global" 4 connectivity errors such as the one shown in Figure 7. Identifying this class of

error is important, since connections that violate the component boundary implied by a structural

'The discussion of global and local connectivity is in Chapter 3.
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VHDL description change the behavior of the component to be extracted. The following Prolog

program is it definition for identifying this problem.

find..anomalylist(.,0).
find-.anomaly..list(Comp, [lode IRest])

find-.anomalyCCoinp lode),
find-.anonialy-.list CComp,Rest).

The Prolog rule calls upon a series of clauses under find .anomaly/2 that compares one of

the internal nodes of the component being extracted to the external connections of the all other

components in the component database. An example of how find..anomaly/2 is defined to examine

transistors and a transmission gate is the following.

find-.anoaly(Comp,lode)-
Cptrans(lode,_,_.,X,Y);
ptrans _., Node ,_.,X ,Y);

ntrans(Node,..,..,XY);
ntrans(_,lode,_X,Y)),

writeC 'Failure extracting component '),write(Comp),
write('.'),nl,write(1 Internal node, '),write(Node),
write(', connected to a transistor at X:1),
write(XuriteC', Y:'),vriteCY),write('.'),nl.

find..anomalyCComp,lode) :-
Ctgate(lode,__,,)
tgate....ode..,.,X.Y);
tgate... lode,-,X,Y);
tgate(_,_ lodeXY)),
write C Failure extracting component '),writeCComp),
writeC'.'),nl,vriteC' Internal node, '),write(Node),
write('. connected to a tgate at X:1),
write(X),writeC', Y:'),write(Y),write('.'),nl.

find-anomaly(.,.).

Trhe Prolog program find-.anomaly/2 is set up to produr- warning messages to the designer and

continue hunting for other possible connectivity problems. Further, find..anomaly/2 is set to

succeed in this case so that errors for other components may be found. Use of a ! f ail could have

been used to force failure upon the first encounter if desired.
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A separate find anomaly/2 is generated for each type of component that can exist in the

component data base. Additional find-anomaly/2 clauses are generated automatically by vhdl2ges

(Dukes 91b) for each component that can be generated on the component data base by an extraction

rule.

The Prolog program find-anomalylist/2 corresponds to the form of 'P. The list passed

to find-anomaly/ist/2 is guaranteed to be in the termination domain D, by atomlist/i used

in not-connected/2. Further, find-anomaly/2 executes only while component-facts of the type

being searched exist in the component database. Thus, we can be reasonably certain that

findanomnaly.Jist/2 will always terminate.
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V. Delay Models for VHDL

Timing information used for hardware design may be viewed from several perspectives. The

physical representation of the design (e.g. mask layout description) can provide close approxima-

tions of the actual resistive and capacitive loading encountered in a design. At a more abstract

level of the hardware design, a VHDL model may be used to predict hardware timing from a di-

rect or indirect perspective. The discussion that follows presents three methods of accomplishing

pin-to-pin critical path analysis. The type of critical path analysis examined in this research per-

forms the process of extracting pin-to-pin critical pths in two steps. A calculation of propagation

delays through the lowest-level components is performed in the first step. The second step involves

summing delays from inputs to outputs for all possible critical paths.

For instance, the physical layout description may be viewed as the lowest level perspective

in critical path analysis. Extracting pin-to-pin critical paths from a layout description using logic

extraction occurs in the following manner.

1. Propagation values are calculated from known capacitive and resistive loading in the circuit.

2. Delays are summed along paths from input pins to output pins.

Calculating Delays from Layout

Shown in Figure 11 is a simple model of a CMOS inverter used to calculate delay'. The

figure represents the resistive and capacitive elements that would be encountered. The elements in

the circuit are RP for the resistance through the channel of the p-type MOS transistor, Rn for the

resistance through the channel of the n-type MOS transistor, RL for the "lumped '2 " resistance of the

output node, CL for the "lumped 3" capacitance of the output node, C, ... Cn for the capacitance 4

'This model was chosen to demonstrate one method for incorporating delay calculations into the extraction

process of GES.
2 the resistance as computed on a node by magic's extract
'the sum of the capacitances between the output node and all other nodes reported by ert2sim
4 Since ert~stm does not produce gate capacitances, a gate capacitance is also computed from the existing tran-

sistors in the transistor database in CES.
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on every MOS gate connected to the output node, and Vo for the voltage between the output node

and GND.

RL

Figure 11. A Simple Delay Model.

From Figure 11, two delay models may be constructed. The general equation used for prop-

agation delay is5

T=ZR J2G. (7)

For the case where the p-type MOS transistor of the circuit is turned on, the n-type MOS transistor

of the circuit is off, and Vo is equal to ground, the propagation delay may be described by

n

(Rp + RL)(CL + C). (8)
i=1

Likewise, for the case where the n-type MOS transistor of the circuit is turned on, the p-type MOS

transistor of the circuit is off, and Vo is equal to Vdd, the propagation delay may be described by

r = (R + RL)(CL + C,). (9)

i=1

If we consider the CMOS inverter as a degenerate case of the NOR-gate and the NAND-

gate, propagation delays may also be calculated by the appropriate parallel and series formulas for

th, p-type and n-type MOS transistor networks of both types of gates. Calculating propagation

'This model for computing delays is typical of one method shown in the literature (Ouste 84)
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delays based on this model appears valid, provided the output node terminates only on gates of

MOS transistors. Should pass transistor logic exist in the circuit, a different view must be adopted.

For pass-transistor logic, the following practice is adopted. A pass-transistor path is one

which follows along the drain to source of a p-type or n-type MOS transistor without a termination

to Vdd or GND. The total load resistance, RL, is determined from the appropriate parallel and

series computations of resistances along all pass-transistor paths connected to the output node.

Furthermore, all capacitances along all pass-transistor paths connected to the output node are

summed. Essentially, a worst-case calculation of possible loading is performed by assuming all pass

transistors are in a conducting state. A worst-case calculation is necessary for conducting critical

path analysis.

Determining Propagation Delay in VHDL

There are three methods that may be used to determine propagation delay from a VHDL

model. The first method uses the timing information explicitly stated in the VHDL model through

the signal assignment statement. The second method calculates the timing information from the

loading on a particular input. The third method combines the delay based on loading and the

explicitly stated delay in the VIIDL model.

Delay Model Specified in VHDL As indicated in Figure 12, delays are specified by the

VIIDL model for all components regardless of the output drive. In this case, a specified delay on

a component in VIIDI, implies the drive required by that physical component to meet that delay.

Propagation delays along paths are then determined in a way similar to step two for the physical

layout description.

Delay Model for Loading in VHDL Shown in Figure 13 is a model for calculating delay

of a component output. The function
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In Out

~I DdH where Ddl = delay

i-JLN

delay is fixed regardless of N

Figure 12. Delays Specified in Description.

delaydr = f([LL,..., LN], Ddr) (10)

returns a delay value based on the loading of other components being driven by the output and an

internal drive capacity, D. Once the delays are calculated for all components, delays are summed

along paths from input pins to output pins in a fashion similar to the second step for critical path

analysis of physical layout.

In Out-[Comp IFLi
-- DdrH where Ddr = drive

delaydr = f([Li, LN], Ddr)

Figure 13. Delays Calculated from Fanout.

It is not obvious how the fanout for a signal may be calculated. The information may be

gathered by flattening a VhDL model using a Prolog routine called flatten. The Prolog routine

converts a hirarchical VIIDL model to a gate-level component netlist. Propagation delays may

then be calculated by determining the number of inputs being driven by a signal. The search is easy

to perform and each component, has a propagation delay calculated through this method. At this

point, logic extraction may be conducted through a customized GES routine, performing pin-to-pin

critical path analysis.
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Hybrid Delay Model in VHDL The hybrid delay model combines the two previous

models. A hybrid delay equation may be constructed as follows.

delayhy = delaydr + Ddl (11)

Like the delay model fnr loading in VHDL, delay values for all components must be calculated

first, assigning each a delaydr. Then a delayhy is calculated for each component based on Eq 11.

Afterwards, propagation delays are determined in a manner similar to step two for the physical

layout description.
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VI. Critical Path Analysis

Knowing that a layout specification matches a structural specification component-by-compo-

nent and connection-by-connection is not sufficient to guarantee equivalence between both struc-

tural specification and a layout specification. Other properties, e.g., power requirements, circuit

delays, and circuit reliability, are important to consider in addition to circuit function. If a cir-

cuit does not meet a timing constraint specified in its structural specification, then it is useless

regardless if it is funtionally equivalent to its structural specification.

Presented in this chapter is one approach to performing pin-to-pin critical path analysis of

a circuit within the logic extraction process. We will show how logic extraction limits the circuit

size u-ider consideration for pin-to-pin critical path analysis and prunes many noncritical paths

early. Through the process of pruning, pin-to-pin critical path analysis of very large circuits may

be pcisible.

Though this chapter focuses on pin-to-pin critical path analysis, other properties of a circuit

may 1-V examined. We hope that the discussion on pin-to-pin critical path analysis here will provide

insig;:t as to how other properties may be extracted within logic extraction.

Consideration of Feedback in Critical Path Analysis

The contribution of feedback loops to pin-to-pin critical analysis is considered here before

prese iting the definitions for structures used in the pin-to-pin critical path analysis. Figure 14 is a

tlhffi an model (ilayes 8S'108-109) for a typical circuit. CN represents the combinational circuit

network and L represents the latching or memory circuit. The output of the circuit depends upon

the inputs and the present state values of L. In a stable circuit, the delays from input to output in

the CN do riot include the feedback paths. Thus, the delay of the combinational circuit, is actually

wit hin the CN port ion of the model. The asynchronous cycle time may be computed by "breaking"
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the feedback paths in the VHDL model and extracting the circuit with a new VHDL model, thus

adding the CN and L critical paths together.

L

Figure 14. Huffman Model.

Extracting Critical Paths

Every component above the transistor level in GES contains a set 1 of paths. A path, 1P, is a

pair, [L, D], where L2 is an edge-bounded acyclic path (EAP) and D is the propagation delay of

L. L is an ordered collection of nodes where the head is the first node in the EAP anu the last is

the last node in the EAP. All of the nodes in L describe a path through a circuit. For the purpose

of constructing pin-to-pin critical paths through a circuit, E is a set of input and output nodes for

the component being extracted, which is a subset of all the nodes in the circuit.

Path Generation Without Feedback

The following are definitions for terms and functions used to form the extraction of critical

paths during the extraction process in GES. For notation, a preceding lower case. letter on a label

Sets and lists in the context of this discussion have different meanings, though both are represented through
lists in Prolog. In the case of a set, the conventional meaning as an unordered collection of unique objects prevails.
A list is considered to be an ordered collection of objects.

2L is used here since the structure conforms to list/1.
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designates an atom, a preceding upper case letter on a label designates a variable, and a preceding

underscore3 designates a "don't care."

Definition 1 A node is an interconnection label in a circuit. For notation, a node is represented
by n.

Definition 2 An EAP is an ordered sequence of nodes. An EAP :s constructed as [n,, ... ,n,]
where m > 2 and nj $6 n,

Using the symbol I as a list constructor, an EAP may be constructed as [nij[n21[n31 fH ... [n I

Trhe node nj is called the head, the list of nodes following nj is called the tail, and nm. is called the

last. For notational convenience, the head of L may be referred to as head(L), the tail referred to as

tail( and the last referred to as last(L). Functionally, the head, tail, and last may be represented

as the following.

head([n1, .. ., n ..) =

Definition 3 The predicate, mrnmbcr(z. L), is true when n r- L and false otherwise.

mnebr(N, [,VI-.L]) - true

Ynrmbrr(N,[F.NIL]) - member(N, L)

In Prolog. member may be written as the following.

' In Prolog. an underscore designates a "don't care." In order to preserve V - meaning of a variable location and
avoid singleton variable warnings in Quintus Prolog (Quint 88), this notation was adopted.
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me ber(I, [IL).

member(NjIjIL) :- member(NL).

Definition 4 The predicate, append(Lz,L2 ,L3 ) is true when Li = [nz, ... ,nm], L 2 = [n.+,,

,m+p], and L 3 = [ni, ... , im, nm+,, ... n-+p].

In Prolog, the append function may be written as follows.

append([HIL1] ,L2,HIL3]) :- append(Ll L2,L3).

appendC f) ,L,L).

Let L 1 , L2 ,..., Li be EAPs, Hi = head(Li),Ti = last(Li) and E a set of input and output

nodes for the component being extracted which is a subset of all the nodes in the circuit.

Definition 5 join(Lz, L2 , L 3 ) is true iff

1. rnember(Ill, E),

~2. T1 = 112.

. mernber(Tl, E) is false,

4. member(T,, LI) is false,

5. R2 = tazl(L 2 ),

6. and append(Li, R 2, L3).

In Prolog, the join function4 may be written as the following5

4
Difference lists (Bratk 86:192) may be used to increase the efficiency of the operations shown.
'In some Prolog implementations (Quint 88), the not/i function does not exist. In this context, the not/i

function is assumed to be defined as

not(Goal) :- call(Goal),! ,fail.
not(.)
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join([H1IR1],[T11R2],EL3) :-

zember(H1,E), last(,1T1), last(R2,T2), not(zeaber(T1,E)),

not(member(T2, [H1I 1)), append([H11R1],R2,L3).

For convenience, the symbol "*" will be used to denote the join operation in the following

manner.

[L3 = Li *L 21 de=f [join(Li, L 2 , L3)]. (12)

EAPs may only be constructed using the join predicate. In essence, the join operation may be

thought of as an EAP extension function. This being the case, we may show the following.

Lemma 1 An EAP, L, with head(L) V E, will have only two nodes (m = 2).

Proof

By Definition 5, only EAPs with head(L) E E may be extended. Therefore, all EAPs
with m > 2 must have their head(L) E E leaving lists with head(L) V E with only
mn =2.

Theorem 1 Let L be an m node EAP where2 < m and I < i < m, 1 < j <m, and i j.

Vn E L, if n, = nj then L is not a valid EAP.

Proof

base case: Assume m = 2. Then L = [ni, n2]. Assume nl = n2 . This is not consistent
with Definition 2. Therefore, n, i n2 .

hypothesis: Assume rn > 2. Then L = [nh, ... ,im]. n, # n, by Definition 2. By
Lemma 1, we know that ni E E. Furthermore, we assume that L contains no feedback
loops.

induction: L,,+i = [n T .... , n,+] and Lm,m+ = [nm, nm+i. We need to show that

Lm+i = Lr, * Lm,m+i.

The EAP L,,,+, cannot ex&t ,t be formed if nm E E by Definition 5. Thus nm i E
and by Lemma 1, the EAP, Lm,m4 1, must have only two nodes. For the operation to
be valid, n,+1 V Lm by Definition 5 thereby avoiding a feedback loop.
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From Theorem 1, it is evident that EAPs are constructed free of feedback loops through

the "join" function. Figure 15 shows how the join function works initially. As noted previously,

feedback loops do not contribute to the critical path of CN and may be eliminated. This being the

case, the resulting EPAs constructed from a finite collection of EPAs will be finite and the number

of possible p.ths, P, spanning a component from input to output will be restricted by a finite set

E. Some bounds on the process of forming pin-to-pin critical paths may be realized.

IPi .. INI X E E
4Li - Y i E

eL 2 1I
I L -- 1~
, La .'

Figure 15. Initial Application of the join Function.

Figure 16 shows how the join function works at some point after the initial join function

is used. Examining L2 in Figure 16, it appears that cycles might exist within L3 after the join

operation is performed; however, the nodes forming the EAP between Y and Z are the interior

nodes of the subcomponent to which the path L2 belongs. Essentially, L 2 may be considered to

have only Y and Z as shown in Figure 15. Thus, Theorem 1 and Lemma I still hold regardless of

the level of hierarchy.

,----L 1 = Y V E
ly] ... Iz zI Z L,
t*- L2 =

L 3  -1

Figure 16. General Application of the join Function.

Within an extraction rule, there may exist more than one path for each subcomponent. Before

any path manipulation is performed for a component, the subcomponents and interconnections are
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checked by the extraction. Afterwards, a list of the component's external signals is constructed.

All of the paths from the subcomponents are appended together into a list of paths. The list of

paths and external signals is then passed to a Prolog function.

At the top level, the algorithm for finding the pin-to-pin critical paths is as follows.

initial conditions: a list, E, of external nodes and a list of paths.

1. Generate all possible new paths.

2. Eliminate any path for which the head or tail of the list is not in E.

3. Eliminate paths that are not pin-to-pin critical paths.

The algorithm for generating new paths is the following.

initial conditions: a list, E, of external nodes and a list of paths.

1. Perform the join operation on all lists of paths and add their respective delays.

2. Eliminate paths that were used to construct new paths where the heads of their
EAPs are in E.

3. Repeat until no new paths are generated.

Once the extraction process has completed, another routine may be used to generate a structural

VhIDL description. The VhlDL description is currently generated with pin-to-pin critical path

information as comments.

Efficiency

Assume a component with I inputs, 0 outputs, and M nodes. Initially, all EAPs within

the component will contain two nodes. In the worst case, all nodes might be interconnected. An

enumeration of a worst-case initial condition is shown in Table 1. The '" indicates no entry

allowed 6 . From Table I the only lists that do not exist are those along the diagonal. This being

the case, the worst-case initial number of EAPs is m 2 - m or 0(m 2 ).

5 Definition 2 in the previous section
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Now we consider the worst case number of EAPs that might exist between two nodes. For

the time being, consider only the upper-right half of Table 1 and an EAP with n as an input and

nm as an output. From the table and the join function, the possible EAPs may be enumerated in

the following manner.

Lo [i,, X , ., X 3, X0 2,nm]

l [hi, X .X 3 ,Xm-2, m]

L2 [i, X ° ...X 3 , X ,m]

L 3  = [n,, X,..., 1  .

1 Xm3, X)l- 2 , rim]

L __,-_1 In,,.Xl_..., Xmla, XIM-2, nm]

In each EAP, Xj designates the existence, X1, or nonexistence, XP , of its respective node, nj + 1. In

the case X', the corresponding comma is not considered to exist in the EAP. From the enumeration

of possible EAPs that may exist from Il to nm, the order is 0( 2 '-2).

Table 1. Initial EAPs in a Hypothetical Component

node 111 ?12 n3 .. m. n

nl * jnl, n 2I Inl, n3 ] ... [n2, nm]
fl2  [n2.,,,1  * [,, 713] . [n2 , n,,m]

n3  [n , n ] [n., n * ... [n , nl]

im [rim , nI] [In,,, n1] [n,, n3] ...

If we include the bottom-left half of the matrix, the problem becomes more complex. Since

the interior nodes may now occur in any order and appear no more than once, the complexity of

the problem is raised to O((2'-2)!). This upper bound is highly pessimistic. Normal circuits do
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not contain this high level of interconnectivity. The number of EAPs is further constrained by the

scope of the extraction rule.

Since the efficiency of the join function is O((2m-2)!), the join function is highly unreasonable

as a tool for pin-to-pin critical path analysis, even for a modest number of interconnected nodes.

However, within the realm of the GES extraction rule, the size of the circuit being examined is

usually small. As a result, the number of interconnected nodes is small. The hierarchical nature

of VttDL allows a circuit to be viewed as a component constructed of subcomponents which are,

in turn, constructcJ ficm subsubcomponents and so forth, until the lowest level is reached. The

extraction system uses the hierarchical view of the circuit, working from the lowest level toward the

highest-level component view. As a result of the extraction process, a critical path of a component

may be thought of as the construction of smaller critical paths through several of its subcomponents.

Figure 17 shows how a pin-to-pin critical path is constructed from the pin-to-pin critical paths of

its subcomponents. Therefore, it is not necessary to carry along other noncritical paths within

subcomponents, thereby pruning out many nodes that would not contribute to the pin-to-pin

critical path of the component.

Sulbcomlponents

Component

Figure 17. Critical Path Analysis.
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False Paths

Though a discussion of all -ritical path analysis techniques is beyond the scope of this research,

it is important to discuss one aspect of critical path analysis. The previous technique of calculating

a pin-to-pin critical path for a component considers a full path regardless of whether the path

through the subcomponents will contribute to the actual delay of the component. This type of

path is referred to as a false path.

For a purely-combinational circuit, this type of problem may not arise; however, for a se-

quential circuit the result may be different. Should a pin-to-pin critical path be identified as in the

previous section, there is no guarantee that there is a state in the hardware under consideration

that would lead to tlbe use of the identified path.

To illustrate a false path, consider a typical clocked JK flip-flop as shown in Figure 18. When

the ciock pulse on c is high, the inputs from j, k, q, and notq are able to propagate through

the first stage, but, not thr ugh the second stage. When the clock pulse on c is low, values are

propagated thr,'ugh the second stage.

Stage I Stage 2

--- -- --
jw

notc

Figure 18. Typical Clocked JK Flip-Flop.

69



Assume that the propagation delay through the first two NAND gates is 4 nanoseconds (ns),

the delay through the rest of the NAND gates is 3 ns, and the delay through the inverter is I ns.

Knowing the delays through the components of Figure 18, a set of paths may be constructed. The

paths are shown below.

I C1notq,uJ.4), [Cj,uJ,4J, [Ecu],4], [[cvJ,4), [[kv],4), [[q,vJ,4],
[[u,w],3], [[x,w],3], [[v,x],3], [[v,x],3], [[c,notc],1],

EHv.y],3], [[notcy],3], [Enotc,z],3], [Ex,z],3),
[[y,q],3], [notq,q],3, [[q,notq],3], f[z,notq],3] I

The set of input and output nodes for the component is E = j, k, c, q, notq which we will represent

s the following.

C ,k, c,q,notq]

After application of the algorithm for finding the pin-to-pin critical paths, the following set

of paths results for the clocked 3K flip-flop.

[ [notqu,v,y,q),13], [[j,u,v,y,qJ,13J, [(k,v,x,z,notqJ,13J,
[[q,v.x,z,notq],13, E[ju,w,x,z,notq],16], [[c,u,w,xz,notq],161,
[[c,vx,wy,q1,161, [k,v,xw,y,q".161 I

Ifstage I is broken from stage 2 in Figure 18, a maximum delay path through stage 1 is [[j ,u,w" .7],

and a maximum delay path throuigh stage 2 is [E,y,q] ,6). A maximum delay path through stage

I will , to i ns and a maximum delay path through stage 2 will take 6 ns. Putting both stages to-

gether renders a maximum delay for the clocked JK flip-flop of 13 ns; however, the pin-to-pin critical

path analysis rendered a maximum delay path of CCJ ,u,v,x,z,notq] 16) for a maximum delay

of 16 ns through the clocked JK flip-flop. The maximum delay path of [Ej ,u,w,x,znotq- ,16] is

never used as a result of the clock.
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Therefore, the rendered false path would provide an overly pessimistic view of the delay for a

given pin-to-pin critical path. So the model presented in the previous section should be used with

this caveat. If a more complicated model is desired, the previous section should be a guide on how

to incorporate other critical path analysis models into the logic extraction process.
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VII. Examples and Results

In this section, four layout designs in magic will be examined. The first is a rather simple

design of a fabricated two-phase clock generator. The second design is an ALU that was verified

using GES and fabricated. The third design is a 60,000 transistor design. The last design is a larger

250,000 transistor design. In all four examples, GES was used in the layout process to identify

external and internal design errors. The first example demonstrates the Design-Rule Check (DRC)

capability of G ES. In the second example, a design is verified using only GES for functionality and

critical path analysis. The third and fourth examples are used to demonstrate the performance of

GES on large custom VLSI chip designs.

Clock Generator

A clock generator is an example of a circuit that functions correctly, yet cannot be simulated

by essm (Terma 80). esim is a switch-level simulator that accepts as input a transistor netlist

from magic. The simulator state advances after values on all nodes have converged to a steady

state. Since the clock generator's normal function is to oscillate, esim cannot simulate the circuit;

however, GES can extract the logical composition of the circuit to demonstrate that the correct

components and the correct connections exist.

The transistors in the transistor netlist, generated from the mask layout description using

extract, forim fully static CMOS components. The logical components were extracted from the

transistor netlist. The following is a listing of the log file.
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I ?- ges.
finished with read.
Capacitor ptrans (nIZCAP2,n3_ 140.8,n3-140_8,136,52) :removed
Capacitor ntrans(nIZCAP1,n3_ 2_115,n3_12_115,9,-42):removed

finished with find-error.

finished inverters.
finished tgates.

finished clk_inv.

finished nand.
finished nor.
finished find-more-errors.

There were two capacitors placed in the circuit to vary clock frequency and duty cycle. Both did

not appear in the transistor netlist using mextra (Terma 86); however, they did appear using extract

(Calif 86). The input to GES used the output from extract; thus the capacitively isolated signals,

IZCAP1 and IZ.CAP2, show up in the report as capacitive transistors. The capacitively isolated

signals nIZCAPI and nIZCAP2 were found and removed. All other components in the circuit were

successfully extracted using GES.

GES produced a listing of the components in the clock generator and their interconnections.

The mask layout description of the clock generator was verified to have been generated correctly

inassmuch as the components and their interconnections were concerned.

To introduce a flaw into the clock generator circuit, the metal-I line for GND and the metal-

1 line output of an inverter were shorted together, demonstrating a possible human error during

layout. Figure 19 is a circuit diagram of the normal and abnormal portion of the affected circuit.

To help make the example more interesting, a polysilicon line has also been severed. The first fault

denionstrates a stuck-at-0 fault, whereas the second demonstrates a floating fault on one portion

of the inverter. In addition to the external errors, an internal error is introduced between a NOR

gate and an inverter. At this point there is a multiple fault in the circuit.

The following is a log of the Prolog session using GES on the errant clock generator circuit.
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NORMAL ABNORMAL

vdd vdd vdd vdd

gnd gnd gnid grid

Figure 19. Circuit Diagram of Normal and Abnormal Circuit.

I ?- ges.
finished with read.
Bad trans ptrans(n3_ 2_115,nvdd,ngnd,70,7) :removed
Straight wire ptrans(ngnd,nvdd,n3_44_29,99,8) :removed
Capacitor ptrans(nIZCAP2,ngnd,ngnd, 136,52) :removed
Capacitor ntrans (nIZ_CAPln3_ 12_15,n3_ 12_ 115,9,-42) :removed
Capacitor ntrans(n3_j2_ll5,ngnd,ngnd,71,-21) :removed
finished with finderror.
finished inverters.
finished tgates.
finished clkinv.
finished nand.
Failure extracting component nor-gate(n3_72_106,

n3_340_35,n3_238_103,155,11, 1). Internal node,
n3_314_22, connected to an inverter at X:197, Y:13.

finished nor.
finished findmoreerrors.

ALU

'he design and construction of the AL" started with the VIIDL design and ended with

verification of the layout description. The steps in the design of the ALU are shown below.

I A Behavioral VII, description was generated.

2. A Structural V"Dl description was generated.

3 Both the structural and behavioral descriptions were simulated together and results compared.

4. -orrections were made to the structural description as deviations were encountered.
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5. vhd12ges was run to generate a "customized" GES extraction system from the structural VHDL

description for the design.

6. The physical layout description was generated by hand from the transistor level up.

7. As each cell was created, the "customized" GES extraction system was run to ensure conformance

to the structuial VHDL description.

8. Once the entire ALU was completed and verified using the "customized" GES extraction system,

pin-to-pin critical path analysis was performed.

At no time in the design was a switch-level simulation or SPICE simulation of the layout de-

sign performed. During the layout process, various errors in interconnections were caught by the

"customized" GES extraction system.

The ALIT had a 4-bit opcode, 4-bit operands, 4/8-bit result, and comparator output. A view

of the layout for the ALIT is shown in Figure 20. The design was primarily based on the bit-sice

design from (Mano 82:217-228) with the addition of a multiplier. Less than 2 man-weeks were

required to fully describe the design in VIIDL and lay out in magic. A total of 4 integrated-circuit

chips were fabricated from MOSIS. All chips were tested with 80,000 test vectors in various sorted

and psuedo-random sequences and were found to be 100%, functionally correct. The pin-to-pin

critical path analysis reported a 10Mliz operation speed compared to the 13.5Mtlz actual speed of

the chips.

60.000 Transistor Design

(;ES was used on a 60,000-transistor design of a multiplier section in a floating-point multiplier

chip. The statistic/0 function of Quintus Prolog was used to report periodic timing statistics

within the extraction process. These results appear in Table 2. Less than 8 Megabytes of memory

were required for this design. The performance results were collected from a MicroVAX 3600

running Ultrix V3.1 using Quintus Prolog. Three-hundr,-d-eighteen design errors w--e found in the
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Figure 20. Layout of the ALU Integrated Circuit.
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VLSI design. From Definition El (shown in Figure 9), there were 30 type-1 errors, 36 type-3 errors,

10 type-4 errors, 10 type-5 errors, and 120 type-6 errors. From Definition E2 (shown in Figure 10),

there were 82 type-4 errors.

Time to Perform CPU Time (min:sec)

Read and Eliminate Duplicates 025:40
Find Definition El Errors 000:26

Find inv 002:56
Find tgates 683:15
Find invZ 121:32
Find nand 036:30
Find nor 025:21

Find Definition E2 Errors 000:05
Find dff 000:11

Write Component Netlist 007:24

Table 2. Performance on a 60,000-Transistor Design

From the perfoi,,iance measurement of GES in Table 2 we can make a few observations. I/O

for the example had moderate impact on the execution time of GES. Looking for errors in the design

can be done quickly. This is indeed desirable, since a designer might want to interact with GES in

an attempt to find errors that may exist within a layout design. Though the timing statistics do

not represent many level-N components, extraction for other types of components (e.g., half-adders,

adders, adder-arrays, registers) usually progresses quickly. The vast majority of extraction time is

usually spent with the level-I rules.

Performance on a 250,000-Transistor Design

A 250,000 transistor-sized section of a 1,5C'1,000 transistor-sized design was used to examine

the performance of the logic extraction rules when considering indexing. The inverter, transmission-

gate, and clocked-inverter rules were used. The section used was largely constructed of memory

cells. The platform used to perform extraction was a MicroVAX 3900 running Quintus Prolog
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V2.4 on Ultrix V4.2. Shown in Table 3 are the results of running logic extraction on this 250,000

transistor-sized design.

Time to Perform CPU Time (min:sec) Memory (MegaBytes)
Read and Eliminate Duplicates 270:25 24

Find Definition El Errors 002:43 24
Find inv 012:54 24

Find tgates 028:42 24
Find invZ 018:12 24

Write Component Netlist 032:42 24

Table 3. Execution Times of Indexed Logic Extraction Rules for a 250,000 Transistor Design

The CPU time for extracting inverters, transmission-gates, and clocked inverters was less

than an hour. From Table 3, the time to read in the transistors, eliminate duplicates, and build the

transistor-facts data base took considerable CPU time. Altogether, the process consumed 6:05:38

(h:mm:ss) of CPU time. The total CPU time required for a 60,000 transistor-sized design for the

same operation was 14:01:13. Indexing allowed for extraction of a design of more than four times

in size in less than half the time.
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VIII. Limitations

Presently, there are two types of limitations that exist in using GES. The first type, alluded

to earlier, involves acceptable VHDL code. The second type involves designs that are not easily

extracted. After the discussion of the limitations, some suggestions for overcoming these limitations

will be discussed.

Currently, only structural VHDL descriptions with signals of mode in and out are accepted.

The modes buffer and inout cannot be handled while still ensuring correct critical path analysis

as described previously. There do not appear to be problems with signals of mode linkage.

The second limitation specifically involves the types of component configurations that are

recognized and extracted. Assume that an extraction rule exists for identifying an AND gate

formed from a NAND gate followed by an inverter. A typical GES extraction rule for identifying

this configuration is the following.

and-gate :-
nand-gate(Nx,Ny,Ninter,X0,YO,_),
inv(Ninterm,foutput,X,Y1,_),
unique_.component ([[Xi ,Y1], [XO,YO]]),
not.connected([linte rm], [Ix,Iy,Ioutput]),
retract(inv(Ninterm,Noutput,...,..)),
retract (nand-gate•(Nx, Ny, Nint erm ...... ) ),

findanomaly_..list (and-gate(Nx,Ny,NoutputXO,YO,i), [Ninterm]),

assert (and-gate(Nx,Ny,Noutput,XOYO, 1)),
fail.

and-gate.

From the extraction rule and-gate/0, every NAND gate followed by an inverter will be replaced

with an AND gate.

Consider an additional extraction rule, half-adder.rc/0, constructed as follows.

79



half..adder-cc :
xor-.gateCNx,Iy,Isum,X,Y,.),
nand-gat.CNx,Ny,Icbar,X1,Y1 ,),
inv(lcbar,Icarry,X2,Y2,-j,
unique-.coponentC[[X2,Y2] , E1,Y1) , XO.YO)]),
xlot-.conected([Ncbax) , £x,Ny,Isum,Icarryl)
retract~inv(Ncbar,Icarry,.,,j),
retract~nandgatex,y,cbar,_,_.,_)),
retract~xor-.gate(lx,Iy,Nsui,..,.,),
find-.anoualy-list~half..adder-.ccx,y,sua,Icarry,X0,YO,1), Elcbar]),
assert~half adder-.ccx,y,sum,Icarry,XOYO,1)),
fail.

half-adder-cc.

We will use the aiid.gate/O and half-adder.cc/0 rules to perform extraction on the following

components.

nand...gate~na,nb ,ncbar *1, 1, 1)
xor-gate~na,nb,nsum. 10.1,1).
inv ncbar , carry .1,10.1).

If the half-adder.cc/O extraction rule is used before the and-.gate/O extraction rule, the following

will result.

h&lt-adder-cc (na ,nb .nsun ncarry ,10, 1,1).

However, if the atid-gate/O extraction rule is used before the half..adder-cc/O extraction rule,

the following will result.

xor-gate(na ,nb ,nsum ,10, 1,1).
and-.gate~na ,nb ,ncarry ,1. 1, 1)

There are three methods for solving this problem. The first method involves ordering the

rules such that the half-adder.cc/O extraction rule is called before the and-.gate/O extraction

rule. This prevents the and-gate/O extraction rule from interfering with proper extraction of the

half-adder-cc/O extraction rule. The next two methods are interrelated.
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If higher-level structural VIIDL descriptions are not making use of the fact that an and-gate

VHDL description exists, then the and-gate VHDL description should be eliminated. However,

if it is necessary to have an and-gate V[IDL description, ensure that all higher-level structural

VIIDL descriptions take advantage of the and-gate VHDL description. This type of reasoning may

require the designer to make more prudent use of VHDL-based models. However, the designer may

employ another method of enriching the extraction rule set by simply adding an additional VHDL

description for half adders using AND and Exclusive-OR gates.

The previously described problem is not the only case where hierarchical extraction may

require some manual intervention. Some extraction rules might force extractions over component

boundaries. An examplo of how this might occur follows.

The previously defined extraction rules, and-gate/0 and half-adder-cc/0, will be used.

Assume a new extraction rule for half.adder/0.

half-adder
halfadder cc(x,Iy,Isum,Ncbar,XO,YO,_

inv(Ncbar,Ncout,X1,Y1,_),
unique.component([[X1.Y1], [XOYo]]).

not-connected([NcbarJ, [Nx,Ny,Nsum,Ncout]),

retract(inv(Ncbar,Icout......)),
retract(half_adder-cc(Nx,NyNsumNcbar,......)),
find-anomalylist(halfadder (xNy,Nsum,NcoutXOYO,1), [Ncbar] ),

assert(half_adder(Nx,Ny,Nsum,NcoutXOYO,1)),
fail.

half-adder.

The component list from earlier in the F'ction will be used. For clarity, the same netlist is shown

below.

nandgate(nanb,ncbar, 1,1,1).
xorgate(nanb,nsum, 10.1,1).
inv(ncbar ,ncarry, 1.10 1)
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If the extraction is performed in the order, and-gate/O, half-addercc/0, and half-adder/O,

the result will be the following.

xorgate(na,nb.nsum, 10, 1,1).
and_gate(nanb,ncarry, 1,1,1).

The three methods presented carlier are also useful in solving this problem.

There is one type of extraction problem that requires greater consideration. Assume we define

a four-input AND gate as shown in Figure 21(a). Using the new extraction rule for a four-input

AND gate, we will extract the circuit shown in Figure 21(b). Once the extraction process has

completed, two different interpretations may result. In one case, the extraction process might yield

two four-input AND gates and one two-input AND gate. In the second case, the extraction process

might yield one four-input AND gate and four two-input AND gates. Currently, the method

for solving this problem is to exclude VHDL descriptions for models that contain homogeneous

structure.

(a) (b)

Figure 21. Four-input AND Gate and Simple Circuit.

The limitations discussed in this chapter effect only the completeness of logic extraction.

Because of these limitations, it is possible to have a structural specification that is equivalent to its

layout specification, but not have the relation shown true by logic extraction. These limitations,

however, do not effect the correctness of logic extraction.
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IX. Conclusions and Recommendations

Conclusions

The objective of this research is to establish a formal definition of logic extraction, discuss

properties of logic extraction as it relates to formal hardware-verification, and demonstrate that

logic extraction is practical for VHSIC-class designs. We have established a definition of logic

extraction in Prolog. In this manner, the syntax and semantics of logic extraction are established in

a formal-executable frame-work. Further, properties of VHDL were identified and defined through

a formal-executable frame-work. As such, properties of soundness and guaranteed termination were

proven. Finally, pragmatic considerations for efficiency are met by taking advantage of the indexing

trait of Quintus Prolog.

The practical aspects of logic extraction were demonstrated through the production of a

working integrated circuit. Further, a methodology for employing logic extraction in the process

of formally verifying the equivalence relation between a structural VHDL description and a layout

description was exhibited. In addition to guaranteeing the equivalence between a structural VHDL

description and a layout description, the required time to lay out a custom VLSI chip was reduced

due to the diagnostic side-effect available through logic extraction.

This work has demonstrated that logic extraction is not as simple as previously thought.

Logic extraction embodies implicit as well as explicit interconnection properties. Logic extraction

may also limit the design problem space so that other diagnostic tools may be used to examine

portions of a circuit to generate further information for the designer. Extracting pin-to-pin critical

paths is but just one example.

Logic extraction is not just limited to custom VLSI. Logic extraction may be used to assist

verification of the correctness of synthesis. One attribute of logic extraction is the ability to extract

a circuit without the benefit of a structural VHDL description. This attribute may further aid in

the future respecification of nonreprocurable digital parts.
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Recommendations for Future Work

The research explored in this dissertation provides a basis for several new areas of research.

Within this section, new areas of possible research are recommended.

Deriving logic extraction rules from an increased syntax of VHDL would be highly desirable.

Structural VHDL was shown to supply sufficient basis for constructing logic extraction rules; how-

ever, the properties being proven by logic extraction also exist implicitly in data-flow VHDL. A

tool for translating structural VHDL to data-flow VHDL is presented as an appendix and could be

reviewed as a formal method for bridging the gap between structural VHDL and data-flow VHDL

for logic extraction.

Now that critical path analysis has been demonstrated to be feasible within the framework

of logic extraction, other forms of analysis similar to critical path analysis appear plausible. There

appears to be potential for cell-by-cell power analysis of VLSI circuits. Computations based on

worst-case analysis or a typical-case model of power consumption seem feasible. It is possible

that some statistical methods may be used to predict power requirements closer to actual power

requirements through extraction rather than a worst-case power requirements analysis.

Other forms of path analysis may be considered. Reliability analysis might be implemented

through extraction, similar to critical-path analysis. Searching for the most unreliable path through

a system appears feasible using a deviation of the Huffman model for critical-path analysis.

An extension to the logic extraction system might include a function extraction routine for

domino (Weste 85:168) transistor networks. Logic extraction rules that are difficult to tailor to

some transistor networks could be enhanced through a new type of logic extraction rule.

GES is scheduled for use on a million-transistor project. Portions of a multi-chip module will

probably be synthesized. GES will be used to extract manually-generated portions of the design, i.e.,

the BIST portions (Seraf 91a) (Seraf 91b) of the design. In this manner, the manually-generated

portions of the design can be verified and the synthesized portions extracted to a gate-level view
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for simulation in VHDL. This project should provide a basis for studying the utility of combining

logic extraction with synthesis in creating large integrated circuits. A methodology for such use

may be generated from the experience gathered here.
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Appendix A. Definitions

Definition of Behavioral and Structural Specification

In this section, a definition will be given for behavioral specification and structural definition.

For the purposes of the presentation, combinational logic will be used. Afterwards, an example of

each in VHDL will be offered to help distinguish the two from each other.

A behavioral specification is an algorithmic description of how a specified system or compo-

nent is expected to react to a given set of input stimuli. There is usually nothing or very little

provided in the behavioral specification as to the internal physical makeup and interconnections

of the specified system of component. The behavioral specification may be represented abstractly

as in Figure 22. The boundary of the specified system or component is well defined. By well

defined we mean that all inputs and outputs are identified at the boundary of the specified device

or component.

R 

i on

Figure 22. Abstract View of a Behavioral Specification.

From Figure 22, the inputs to the specified device or componer, are represented as I where

I = io, .,i and 0 < m. The outputs from the specified device nr component are represented as 0

where 0 = o0, ... , o,, and 0 < n. The algorithm for the specified device or component is represented

by the relation R where R C I x 0.
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A structural specification for a specified device or component provides a description of the

internal physical makeup and interconnections. The following criteria are used to determine a

structural specification.

1. A structural specification is not a behavioral specification.

2. A structural specification may be constructed from one or more interconnected behavioral

specifications.

3. A structural specification may be constructed from one or more interconnected structural

specifications.

4. A structural specification may be constructed from one or more interconnected behavioral

specifications and structural specifications.

The behavioral specification may be viewed as a procedural method for portraying a specified device

or component. Alternatively, the structural specification may be viewed as a declarative method

for portraying a specified device or component.

The following is a VHDL model of a behavioral specification.
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entity adder is
port(iOil,i2: in bit;

o0,ol out bit);

end adder;

architecture behave of adder is

function bv (input : bit) return integer is
begin

If(input = '1') then return(I);
else return(O); end if;
end;

function bv_inv (input : integer) return bit is

begin

If(input = 0) then return('O');
else return('i'); end if;
end;

begin

process

begin
wait on iO,il,i2;

if ((bv(iO)+bv(il)+bv(i2)) < 2) then

oO <= bvinv(bv(iO)+bv(il)+bv(i2));
else
oO <= bv-inv(bv(iO)+bv(il)+bv(i2)-2);

end if;

if ((bv(iO)+bv(il)+bv(i2)) < 2) then
ol <= bv-inv(O);

else

ol <= bvinv(1);

end if;

end process;

end behave;

From the VHDL description the inputs and output are enumerated as iO, il, i2 for the inputs and

oO,ol for the outputs. The assigned values for the outputs are determined algorithmically from the

inputs. There is nothing in the VHDL description that indicates the physical construction of the

specified device or component.

The following VHDL description is a structural specification of the same device.
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entity adder is
port(iO,ili2: in bit;

o0,ol out bit);
end adder;

architecture structure of adder is

signal pq,r : bit;

component half-add
port (a,b : in bit;

s,cbar : out bit);
end component;

begin

ol <= q nand r;

hal : half-add port map
C a => iO,
b => il,

s => p,
cbar => q);

ha2 : half-add port map
( a => p,
b => i2,

S => 00,
cbar => r);

end structure;

Definitions for Other Terms

Hardware description language (HDL) "a language used to describe a circuit's behavior or

structure." (deGeu 89:27)

Logic synthesis "creation of a gate-level netlist from a register-transfer level description." (deGeu

89:27)

Many-valued Logic an algebraic system consisting of more than two truth values (Resch 69:17).

Mapping "the process of formulating a design in terms of the cells available in a given parts

library." (deGeu 89:27)
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Netlist "a circuit design description in terms of structural elements and their interconnections."

(deGeu 89:27)
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Appendix B. Efficiency Issues

Foremost in the design of GES was the concern for correct execution of extraction. For designs

containing a large number of components, efficiency of the system does become a practical concern.

In a sense, this appendix addresses the pragmatics of performing extraction.

Logic Extraction

The extraction process can occupy a large amount of CPU time. In order to help reduce

the CPU time involved in extracting components, some heuristics are offered. The first heuristic

identifies low-level signature components of higher level components. The second heuristic elimi-

nates duplicate transistors where possible. The third heuristic seeks to reduce the complexity of

extraction-rules. These three heuristics are explained below. Finally, the knowledge of term in-

dexing in Quintus Prolog is used to increase the execution speed of logic extraction with minimal

impact on memory.

Extraction Without Indexing

The complexity of logic extraction consists of two parts. These parts concern the number of

components to be examined and the number of extraction rules used. For the purpose of discussion

we will assume a component data base consisting of one single type of component. By a single

type of component, we mean that the functor/arity of all components is the same. Assume that

the component data base is of size n. Additionally, assume a logic extraction rule matching m

components of the same functor/arity of the component data base. Assume also the process of

logic extraction as described in Prolog for nonindexed terms in the component data base. Under

such conditions, we can show the complexity is of 0(nm).

91



Through induction, the following assertion will be proven

((E 1) A (Vm.(E (m - 1)) =* (E in))) = Vm.(E m)

where E represents the case of an extraction rule matching m components. Considering the base

case, an extraction rule must contain at least one matching component. The extraction rule will

execute n times for n components in the data base since the backtracking mechanism of Prolog

requires it. Therefore, for (m = 1) we have O(n).

Assume now the complexity of 0(n(m-')) for the case of matching (m - 1) componeits.

Under this assumption, it is necessary to examine the cause for an extraction rule to exhibit this

behavior. We "li use the following template for an extraction rule.

E :-

C 1(T1,T2,...,To)C(T12 ,... T2),

not-connected(Signal., Signale),
retract(C, (T11, T21,..., T,,') ) ,

ret ract(C C( T12, T22, . . . , T2 )),

asserta(E(Signal,)),
fail.

E.

In order to force backtracking complexity of O(n(m-)), each Ci, 1 < i < (m - 1), would have to

succeed followed by the failure of not..connected/2.

Finally, the ,n" matching rule is added after C(m-)(T&m-),T m-), . . . ,T 1)). By the

backtracking nature of Prolog, for every possible combination of the first (m - 1) matching rules,

the mh matching rule will be tried n times. By assumption, the first (m - 1) matching rules are

executed (n(m-i)) times. By multiplication we have (n(m-)) x n = nm rendering a complexity of
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Signature Components

Clauses within Prolog rules are executed sequentially. Thus, the order in which clauses appear

in Prolog rules can affect execution efficiency 1 . This procedural aspect of Prolog will be investigated

below to help understand how it can be used to speed up extraction. Assume we are interested in

increasing the execution efficiency of a particular Prolog rule, called comp, shown below.

comp1 :-
subcompA(Aj, A 2 ,.... Ao),
subcompB(Bl, B 2 , .. ., Bp),

subcompC(Ci, C 2 ,..., Cq),

ret ract(subcompA(Ai A 2, ., o)),
retract(subcompB (BI, B 2, . . ., Bp,)),
ret ract(subcompC(Cl, C 2,.. Cq)),
asserta(comp1 (CoI, Co2 ,. CO,)),
fail.

comp1.

Assume that there are j subcompA components, k subcompB components, and 1 subcornpC

components. Should execution of the comp, rule lead to m comp, components exhausting all j, k,

and i subcomponents, respectively, then j = k = I = m. Assume, now, the existence of another

component, comp2 , with the rule

cornp2

subcompB(Bl, B 2 , . . ., Bp),

subcompC(C1 , C 2 ,..., Cq),
retract(subcompB(Bl, B 2, ... , Bp)),

retract(subcompC(Cl, C 2 , . . ., Cq)),
asserta(comp2 (Co1, Co 2,..., COS))
fail.

cornp2.

Assume, too, that n comp 2 components exist and that after the application of both rules,

comp, and comp2 , all j, k, and I subcomponents will be exhausted. From the above extraction

process, then, j = m and k = 1 = m + n. Since subcompA occurs only in compl, subcompA is

called the signature of compl.

'For those more familiar with Prolog, the terms shallow and deep backtracking may come to mind. For diose

wishing to know more about these terms, a discussion is found in (Sterl 1986)
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Furthermore, extraction using the Prolog rule comp, before the Prolog rule coMp 2 is preferred.

If we were to use the Prolog rule comp2 first, then all k subcompB components would be searched for

inclusion in comp2 . Whereas, using the Prolog rule comp, first would reduce the search space to k -

m subcompB components for comp 2 . The search rationale is further predicated on the assumption

that some of the parameters for a subcomponent aid in the selection of subsequent subcomponents in

a Prolog rule. To help understand how parameters aid in the selection of subsequent subcomponents

consider the following explanation.

Assume that some parameter of subcompA, called Ah where 1 < h < o, is connected to some

parameter of subcompB, called Bi where 1 < i < p, in compl. In the execution of the Prolog

rule compl, Prolog will attempt to find a component in the component database called subcompA

before looking for subcompB. Once a component is found satisfying subcompA, the parameters of

subcompA will be instantiated (or unified) to the values corresponding to the component in the

component database. Since Bi = Ah in subcompB, Bi is instantiated to the value of Ah and will

therefore constrain Prolog to finding a component that satisfies subcompB and Bi. The additional

constraint of Bi reduces the possible components to be considered in satisfying compl.

Consider the following example using the Prolog rule described earlier for a D flip-flop:

dff :-
clkinv(P2,P1,G,X,Xloc,Yloc,1),

tgate(P1,P2,D,X,.,),
inv(X,G ..... ),

removetgate(Pl,P2,D,X),

retract(clknv(P2,Pl,G,X,Xloc,Yloc,l)),

retract(inv(X,G,...,.. )),
asserta(dff(P1,P2,D,G,Xloc,Yloc,l)),

fail.
dff.

We may compare the df f rule to a new rule concerning xor.
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xor : -
tgate(B,Bnot,A,XOR....),
inv(B,Bnot...,,1),

inv(A,Anot...,..1),
tgate(Bnot,B,AnotXOR,Xloc,Yloc),
retract(inv(B,Bnot....I)),
retract(inv(A, Anot...,..,1)),
removetgate (BnotB, Anot, XOR),
removetgate(B,Bnot,A,XOR),
asserta(xor(A,AnotB,Bnot,XOR,Xloc,Yloc,3)),
fail.

xor.

Both dff and xor share transmission gates and inverters; however, clk-inv only occurs in dff.

In this case, clk_inv would be considered a signature component for dff. Also notice in xor that

finding tgate(B,Bnot,A,XOR ... ) would easily lead to location of one inverter, aid in the quick

selection of a second, and to location of the second transmission gate.

Eliminating Duplicates

The second heuristic seeks to eliminate duplicate transistors. Since only digital logic is of

interest, additional transistors (added to increase the drive capacity of a circuit) needlessly increase

the search space. When only looking for the logic functionality of a circuit, no additional information

is gained from such transistors. The following is a Prolog rule adopted to eliminate duplicate

transistors while reading in the transistor netlist from a mask layout description.

remove-dup-trans -

read(X),
remove.dup-trans (X),!,
removedup-trans.

removeduptrans.
removeduptrans(end_of_file)

remove-dup-trans(p(A,B,C ...,.....))

ptrans(A,B,C,...,),!.
remove.dup-trans(n(A,B,C,...,.....)):-

ntrans(A,B,C,...),!.
remove.duptrans(p(A,B,C,W,L,X,Y))

asserta(p(A,B,C,W,L,X,Y)),!.
remove-duptrans(n(A,B,C,W,L,X,Y)) -

asserta(n(A,B,C,W,L,X,Y)),!.

95



Reducing Prolog Rule Complexity

The third heuristic addresses rule complexity. Rule complexity is directly related to the

number of components that must be matched. Therefore, rule complexity increases as the number of

components that must be matched increases. In general, simpler rules increase execution efficiency.

An example of how rule complexity influences efficiency may be found in the identification of

registers from a component netlist. Assume the following rule, registeri, for registers.

registeri :
clk-.invCR,P,C1,Clbar,X,Y),
inv(P,R,-.,-),
tgate(n,P,Cbar,C,,.).
tgate(ft,Q,C2bar,C2,-.,_j,
clk-invSQ,C2,Cbar,,_),

tgateCS,Out,Aba,A,.,_j,
retract~clk-.invR,PCi,Cibar,X,Y)),
retract(inv(P,R,-.,-j),
retract~tgate(InPCbar,C,-.,-j),
retract~tgateR,Q,C2ba,C2,.,-)),
retract(clk.irv(S,Q,C2,C2bar,-.,-),.
retract(inv(Q,S,-.,-j),
retract~tgate(S,Out,Abar,A,-.,-.)),
asserta~register(In,OutC1,Cibar,C2,C2bar,A,Abar,X,Y)),
fail.

registeri.

Figure 23 is a diagram of the component extracted by the registeri rule.

Miar M~ar Abar

In Out

Figure 23. Schematic for registeri Extraction Rule.
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Assume a component netlist consisting of clk-inv, inv, and Igaie that when extracted form

j registers with no residual components. Assume also that a register is constructed from two D

flip-flops, described below, and a transmission gate as in Figure 24 and by the Prolog rule for

register2 that follows.

register2
dff(In,R,Ci,Clbar,X,Y),
dff(ft,S,C2,C2bar...,j,
tgate(S,Out,Abar,A,_.,_j,
retract CdffCIn,R.C1 ,Clbar,X,Y)),
retract~dff(R,S,C2,C2ba,_.,_j),
retract(tgate(S,Out,Abar,A,-,-)),
asserta~register(In,Out,C1,Clbar,C2,C2bar,A,Abar,X,Y)),
fail.

register2.

dff :
clk..inv(I,P,Ci,Clbar,X,Y),

tgate(IrL,P,Clbar,C1,.,J.
retractclk.invCR,P,Ci,Clbar,X,Y)),
retract(inv(P,R,..,_),
retract(tgate(In,P,Clbar,Cl,-,-J),
asserta~dff(In,R,C1,Clbar,X,Y)),
fail.

df 1.

Figure 24. Schematic for register2 Extraction Rule.

Using the rules register2 and dif there are k dif, where k =2 * j, and j Igale. If the rule registerl

is considered, there are k clk-anv, k inv, and I Igate where I =j + k.

97



For the purpose of the illustration consider register1, dff, and register2in the following manner.

The parts of each rule that query the fact database will also be numbered to aid in the discussion.

registert :-
Rl clkinv(R,P,C1,Clbar,X,Y),
R12 inv(PR,...),
R13 tgate(In,P,Clbar,C.... ),
R14 tgate(R,Q,C2bar,C2.... ),
R15 clkinv(S,Q,C2,C2bar....),
R16 inv(Q,S,..),
R17 tgate(S,Out,Abar,A...,.),

dff :-
D1 clkinv(R,P,CI,Clbar,X,Y),
D2 inv(P,R,...),
D3 tgate(In,P,Clbar,C,.... ),

register2 :-
R21 dff(In,R,ClClbar,X,Y),
R22 dfi(R,S,C2,C2bar, _,_),
R23 tgate(S,Out,Abar,A...,.),

Statements R11, D1, and R21 may be considered as enumeration statements (or ENUMERATE)

since they simply pick off from the database of facts the next available fact until all facts that

satisfy predicate/arity have been exhausted. Statements R12... R17, D2, D3, R22, and R23, may be

considered as database queries (or QUERY) since some or all of their parameters have been unified

based upon the previous statements. If we also assume the worst-case ordering of components such

that the first k clk-inv actually form the second dff, the rule registerl will "fail" k times before it

will actually begin identifying registers. Furthermore, the k times that register1 failed it identified

k dff. Using registerl to identify registers, there will be at most k failed ENUMERATEs and 4 * k

failed QUERYs. The failed QUERYs are incurred since R12, R13, and R14 succeed, but R15 will

fail causing the entire sequence to backtrack and try a new clk-inv.

Consider the rules dff and register2 on the same component netlist. The rule dff will succeed

until all clk-inv have been exhausted. If we assume that the dff components were ordered in the

worst case then register2 will have only k failed ENUMERATEs and no more. The 4 * k failed

QUERYs from registerl were avoided by reducing its complexity.
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Generally, the above three heuristics have been found to increase the speed of execution.

Identifying signature components may be dependent on the composition of a given component

netlist and should therefore be considered. Eliminating duplicate components not only reduces

the search space but allows for parallelization of the extraction process. Finally, reducing rule

complexity increases efficiency by reducing search failures.
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Appendix C. Using HOL

Preliminaries

Theorems may be proven in IIOL either interactively or through the ML "let" command.

Interactive theorem proving is performed by entering line-by-line commands in order to manipulate

an HOL goal stack and HOL assumption stack. Entering theorems in HOL through the ML "let"

command inserts a proven theorem into a theory data file. Before HOL statements are presented,

some symbol definitions will be provided from the HOL manual.

Infix operators (Gordo87:3)

"tl=t2" is equivalent to "= ti t2" (read as "tl equals t2")

"tl,t2" is equivalent to ", ti t2" (read as "the pair (tl,t2)")
"tl/\t2" is equivalent to "/\ tl t2" (read as "tl and t2")
"tl\/t2" is equivalent to "\/ tl t2" (read as "tl or t2")
"tl==>t2" is equivalent to "==> ti t2" (read as "tl implies t2")

"tl<=>t2" is equivalent to "<=> ti t2" (read as "tl iff t2")

Binders (Gordo87:3)

t!x.to is equivalent to "!(\x.t)" (read as "for all x, t")
"?x.t" is equivalent to "?(\x.t)" (read as "for some x, t")
"@x.t" is equivalent to "@Q(\x.t)"I (read as "an x such that t")

Notice that several symbols are represented through combinations of characters. The A is

represented in HOL by /\ for logical conjunction. The V is represented in HOL by \/ for logical

disjunction. The => is represented in HOL by ==> for logical implication. The -* is represented

in HOL by <=> for equivalence. The V is represented in HOL by ! for universal quantification.

The 3 is represented in HOL by ? for existential quantification. Finally, the A is represented in

HOL by \ for lambda notation. HOL prompts the user for input through the use of a # prompt.

The ;; is used to terminate an HOL command.
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Showing Structure Implies Behavior Through HOL

The device in Figure 25 is a three-input component with a single output. The figure illus-

trates several methods for specifying the behavior of the same device. The behavioral specification

representations shown are VHDL, HOL, a Karnaugh Map, and a Truth Table. The translation of

VHDL into HOL is considered part of this research.

yIo Id d' d

if (x='1') and (y=' XidJJJ.j

and (z='0') then z
out <= '1';
end if; Karnaugh Map

if (x='1') and (y='1')
and z='1') then

out <= '0';
end if; 0 0 0 0

if (x='0') and (y='0')) 0 1 d
and (z='O') then 0 1 0 d

out <= '0'; 0 1 1 d
end 0f; 100 d

1 01 d
VHDL I 1 0 1

1 11 0

Truth Table

( A x y z out.

X=T Ay=T)A~=T)=i*out=T A
---- A A (z = F) =: (out =F))

HOL

Figure 25. Behavioral Specifications for a Three-Input Device.

Three structural specification representations are illustrated in Figure 26. For each structural

specification, the gate description, VHDL description, and HOL description are shown. However,

nothing is known about the relation between the structural specifications shown in Figure 26 and

the behavioral specification shown in Figure 25.
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out (n< ) y anyot outz

ut (not z); 
yA -z

VHDL HOL

out U E )xadVz u.ot

VHDL HOL

out <= x andy an Vxyzout. out=)

ut (notz); xAyA-z
VHDL HOL

Figure 26. Three Implementation Specifications.
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Before a comparison can be made between the behavioral specification and the structural

specifications, a common specification language must be chosen. For the purpose of this research,

the basis language will be VHDL. However, the VHDL descriptions must be transformed to another

specification language to perform formal hardware-verification. Since HOL is to be used as the proof

mechanism, the VHDL descriptions must be translated to HOL.

From Figures 25 and 26 the following HOL definitions were written for the behavioral spec-

ification and the three implementation specifications.

let behavespec =
new.definitionC 'behave_spec',

"!x y z out. behavespec x y z out =

((Cx = T) \ Cy = T) \ (z = F) ==> (out = T)) \
((x = T) /\ (y = T) \ (z = T) ==> (out = F)) /\
((x = F) /\ (y = F) /\ (z = F) ==> (out = F)))");;

let impll.spec =
new-definition( 'implispec',

"!x y z out. impll.spec x y z out =
(out = x \ y \ -z)");;

let impl2_spec =

new_delfinition( 'impl2_spec',
"!x (y:bool) z out. impl2_spec x y z out =

(out = x /\ z)");;

let impl3_spec =
new_definition( 'impl3_spec',

"!y z out. impl3_spec y z out =
(out = y /\ -z)");;

The HOL definition is the method for writing behavioral specifications and structural specifications.

In order to establish that the structural specifications will perform as described by the behavioral

specification, a proof will be constructed in HOL. For each structural specification, a theorem

will be generated stating that for all inputs and outputs, the structural specification implies the

behavioral specification. The first theorem,

V x y z out. impil.spec x y z out * behave.spec z y z out, (13)
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is shown in HOL below. Everything contained within quotes is considered to be the theorem.

#setgoal(U,"!x y z out.
impillspec x y z out ==> behavespec x y z out");;

1!x y z out. impllspec x y z out ==> behave.spec x y z out"

o :void

The next step in the proof process is to remove the universal quantifier through a process in

HOL called generalization. The procedure for manipulating the theorem to be proved in HOL is

performed through a utility called expand. The expand utility provides a buffer between the user

and the theorem to be proved. This prevents the user from performing an incorrect manipulation

of the proof. In HOL, procedures called tactics are passed through expand to tell HOL how the

theorem is to be modified. In order to generalize the universally quantified variables, the GENTAC

tactic is used. Since GEITAC only generalizes one variable at a time, a modifier called REPEAT is

used to perform GEMITAC until it fails.

#expand(REPEAT GENTAC);;
OK..
"impll-spec x y z out ==> behavespec x y z out"

o : void

The next step is to replace impll-spec and behavespec with their definitions. This process

is performed using the REWRITETAC I tactic.

#expand(REWRITETAC [impll.spec ;behavespec]);;
OK..
"(out = x /\ y \ z) ==>
(x /\ y /\ -z ==> out) /\
(x /\ y /\ z => out) /\
('x /\ y /\ z ==> -out)"

() :void
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At this point, the antecedent of the implication is assumed true through a tactic called

STRIP-TAC. This process will create a list of assumptions or append to a list of assumptions should

a list exist. Everything that appears between [ I is considered to be an assumption.

#expand(STIPTAC);;
OK..
"(x /\ y /\ -z => out) /\
(X /\ y /\ z -=> out) /\
('x /\ y /\ z ==> -out)"

[ "out = x /\ y /\ z"

() :void

The ASMREWRITETACO] is different from the REWRITETACO in that substitutions will be

performed within the theorem based upon the assumptions. The substitutions are performed by

matching the left-hand side of the assumption with some element within the theorem and rewriting

that element within the theorem with the right-hand side of the assumption.

#expand(ASM_REWRITETAC[);;
OK..
"(x /\ y /\ z ==> (x /\ y /\ z)) /\

(-X /\ y /\ z ==> (X /\ y /\ z))"
E "out = x /\ y /\ z"

C) :void

The ASHREWRITETAC D and REWRITETAC [I tactics also perform other functions. One such func-

tion is to recognize tautologies through simple pattern matching. In this case, the

ASMREWRITE TACOD tactic eliminated (x /\ y /\ z ==> x /\ y /\ z) after the substitution.

The next step is to break up the theorem into two simpler theorems. The CONJTAC is used

to create two separate theorems from a larger theorem formed by the conjunction of two separate

theorems.
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#expand(COIJTAC);;

2 subgoals
"'x /\ y /\ -z ==> "(x /\ y /\ z)"

[ "out = x /\ y /\ z" I

"x /\ y /\ z ==> "(x /\ y /\ z)"
[ "out = x /\ y /\ z" ]

C) :void

The theorem that is now being manipulated is the bottom one in the previous list. Once

again, the STRIP-TAC tactic is used to assume the antecedent of the implication true.

#expand(STRIPTAC);;
OK..

"-(x /\ y /\ -z)"
[ "out /\ y /\ -z" I
[ "x" I
C: "y" I
1 "z" 1

() :void

#

When an assumption is a literal, the literal is assumed true. Therefore, every occurrence of

the literal in the theorem will be replaced with a "true" value when using the AS._REWRITETAC [

tactic.

#expand(ASN-REWRITETAC []);;
OK..

goal proved

... I- (X /\ y /\ z)
I- x /\ y /\ z ==> (x /\ y /\ z)

Previous subproof:
"'x /\ y /\ -z ==> "(x /\ y /\ z)"

[ "out = x /\ y /\ z" I

() :void
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Once a theorem has been shown to be Lrue, HOL responds with "goal proved" and a recapit-

ulation of the theorems manipulated up to the point of proving it true. Should any other theorems

remain to be shown, HOL will present them to the user. The "Previous subproof:" reply tells the

user which theorem is to be proven next. As before, the STRIPTAC is employed to assume the

antecedent true.

#expand(STRIPTAC);;
OK..
"(x \ y /\ "z)"

["out = X /\ y /\ z" ]
[ "'x" I

[ "-z" ]

) void

At this point, an ASMREWRITETAC ] tactic will complete the proof.

#expand(ASMREWRITE_TAC[);;
OK..
goal proved
... I- (x /\ y /\ z)
I- -x /\ y /\ -z ==> (x /\ y /\ z)
I- (x /\ y /\ z ==> (x /\ y/\ "z)) /\

(x /\ "y /\ -z => (x \ y /\ z))
I- (x /\ y /\ -z ==> out) /\

(X /\ y /\ z ==> out) /\
(Cx I\ -y \ "z ==> -out)

I- (out = x /\ y /\ z) ==>
(x /\ y /\ -z ==> out) /\
(x /\ y /\ z ==> out) /\
(x \ y /\ -z ==> -out)

I- impll-spec x y z out ==> behavespec x y z out
I- !x y z out. impllspec x y z out ==> behave-spec x y z out

Previous subproof:
goal proved

) : void
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Once all of the theorems have been shown to be true, HOL responds by showing all of the theorems

that were generated, to include the first theorem. At this point, it has been shown that

V x y z out. impll-spec z y z out =: behave.spec x y z out. (14)

Two more structural specifications remain to be examined. The next HOL proof will demonstrate

how HOL tactics may be combined to shorten the proof process.

The second HOL proof will show

V x y z out. impl2_spec x y z out =. behave-spec z y z out. (15)

#setgoal([,"!x y z out.
# impl2_spec x y z out ==> behave.spec x y z out");;
I!x y z out. impl2_spec x y z out ==> behave-spec x y z out"

C) :void

Experience with the first HOL proof would suggest that two HOL tactics could be used on

the present theorem. The REPEAT GEN.TAC and REWRITETAC[J tactics may be invoked through

the same expand HOL command. This is possible by the use of THEN. THEN works by applying the

tactic on the left-hand side to the theorem first followed by the right-hand side tactic.

#expand(REPEAT GENTAC THEN REWRITETAC [impl2_spec ;behave.spec);;

OK..
"(out = x /\ -z) ==>
(x /\ y /\ -z > out) /\
(x /\ y \ z => out) /\
('x I\ "A /\Z ==> -out)"

() :void

Continuing to Draw upon experience from the previous proof, the remainder of the HOL

proof is performed below.
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#expand(STIPTAC THEN ASMREWRITETAC[]);;

OK..

"(x /\ y /\ -z => x /\ z) /\
Cx /\ y /\ z -> (x /\ z)) /\
(-x /\ y /\ -Z==> "(x /\ z))"

E "out = x /\ z" I

) : void

#expand(CONJTAC);;
OK..

2 subgoals

"(x /\ y /\ z ==> (x /\ z)) /\ (x /\ y /\ -z > (x /\ z))"
[ "out = x /\ z" 3

"x \ y \ z ==> x \ '"z
[ "out = x /\ z" I

C) :void

#expand(STRIPTAC THEN ASMJEWRITETAC [);;
OK..
goal proved
I- x /\ y /\ -z ==> x /\ -z

Previous subproof:

"(x /\ y /\ z ==> (x /\ -z)) /\ (x /\ y /\ -z > (x /\ -z))"
[ "out = x /\ z" I

) : void

#expand(CONJTAC THEN STRIPTAC THEN ASMREWRITETACEO);;
OK..

goal proved
I- (x /\ y /\ z > (x /\ -z)) /\ (x /\ y /\ -z ==> "(x /\ z))

I- (x /\ y /\ -z > f\ -z) /\
(x /\ y /\ z > x /\ -z)) /\
(-x /\ y /\ -z > x \ -z))

- (out = x /\ z) ==>
x /\ y /\ -z => out) /\

(x /\ y /\ z ==> out) A
('x /\ Y /\ "Z ==> -out)

- 'x y z out. impl2_spec x y z out ==> behave-spec x y z out

Previous subproof:

goal proved
() : void
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The previous two HOL proofs demonstrate several points. The first and obvious point is that

V x y z out. impll-spec z y z out =: behave.spec x y z out (16)

and

V z y z out. impl2_spec z y z out =: behave.spec x y z out (17)

demonstrate how a structural specification can be shown through a formal proof to satisfy a behav-

ioral specification. Secondly, several proof steps may be combined into one step. The final point is

that the choice of tactic is determined by the appearance of the theorem.

The two previous proofs were performed using tactics available in an older version of HOL.

The most recent release of HOL was obtained within a week prior to this report. A new library

has been added to HOL that includes a number of new tactics for propositional calculus. One new

tactic, called TAUTTAC, determines if a theorem is an instance of a tautology of the propositional

calculus. The last proof of

V x y z out. impl2_spec y z out =*, behave-spec x y z out (18)

will demonstrate its use.

#setgoal([1,"!x y z out.
* impl3_spec y z out ==> behave-spec x y z out");;
"!x y z out. impl3_spec y z out ==> behave-spec x y z out"

() : void

#load-library 'taut';;
Loading library 'taut' ...

;; Fast loading file "/usr2/hol/Library/taut/tautml.o"
. o .. . . . . . . . . . .; . . . . . . . ..

Library 'taut' loaded.
() : void

#expand(REPEAT GEITAC THEN REWRITETAC [impl3_spec ;behave-specJ);;
OK..

110



"(out = y /\ z) =->
x /\ y /\ -z ==> out) /\
(x /\ y /\ z => out) /\
(-x /\ y /\ z ==> -out)"

) : void

#expand(TAUT_TAC);;

OK..

goal proved
I- (out = y /\ z) >

Cx /\ y /\ -z ==> out) /\
(x \ y /\ z ==> -out) /\
('x /\ y /\ -z ==> -out)

- ix y z out. impl3_spec y z out ==> behavespec x y z out

Previous subproof:

goal proved

C) :void

Demonstrated within this section is one formal hardware-verification methodology. In this

case, the behavioral and structural specifications were written in VHDL. In order to prove that

the structural specifications implied the behavioral specification, it was necessary to translate the

VHDL specifications into HOL definitions. The HOL definitions were then used to form theorems.

The theorems were then proven through the use of tactics in HOL. The proof, in each case, formally

verified that the structural specification implied the behavioral specification. This process illustrates

how VHDL descriptions may be compared through HOL.
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Appendix D. Translating Data Flow to Structure

Introduction

The purpose here is to present plausible mappings between one "style" of VHDL' to another

"style" of VIIDL. By the term "style", we mean a VHDL description containing VHDL constructs

acceptable to a computer-aided design (CAD) system. Currently, vendor design tools are not

sufficiently sophisticated to accept the entire VHDL language. As such, a vendor will specify a

"style" of VHDL acceptable for their tool which is usually a subset of the VHDL language. This is

the same for vhdl2ges (Dukes 91b).

A Prolog-parser called vhdLparser2 is used to generate a Prolog intermediate form of the

VHDL model to be translated. The translated intermediate form is translated back to VHDL using

the pretty-printer, writevhdl-design-units/4, included in vhdlparser. The Quintus3 Prolog

environment is used.

The Overall Translation Process There are three translations being performed. The

first translation takes a VHDL description and generates a Prolog-intermediate form as defined by

vhdl-parser. The second translation involves applying a mapping from one VHDL construct (as it is

represented in the Prolog-intermediate form) to another VHDL construct (the goal of this project).

In essence, a Prolog-intermediate form is generated from another Prolog-intermediate form. The

final translation generates a VHDL description from the Prolog-intermediate form.

Assumptions There are a few assumptions concerning what is acceptable. The first as-

sumption is that the VHDL provided to vhdLparser is correct VHDL. One method of determining

the correctness of the VHDL model is to have it analyzed through Zycad 4 VHDL. Another assump-

'VHDL as defined by the IEEE std 1076-1987 VHDL Language Reference Manual, hereafter called LRM.
2 Copyright 1990 by the Microelectronics Center of North Carolina (Reint 90)
3 Quintus and Quintus Prolog are trademarks of Quintus Computer Systems, Inc.
4 Zycad VHDL is a trademark of Synopsis, Inc.
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tion is that vhdLparser works correctly. Oddly, some errors have been uncovered with vhdl-parser,

however, we need this for a small "sanity check."

The purpose of this section is to present an overview of the Prolog-intermediate form used

to represent VHDL models. The Prolog-intermediate form is generated from a VHDL model using

vhdl-parser. '1 he documentation accompanying the vhdl-parser did not include a description of

the Prolog-intermediate form. Therefore, this chapter should be helpful to others trying to use

vhdlparser.

The basic Prolog representation for a VHDL model is design-unit/2. The first term of

design-unit/2 is a description of the library or package dependencies for the particular design

unit under consideration. No detailed understanding of the first term is required, but is mentioned

only for completeness.

The second term of design-unit/2 is of great importance, since it holds the Prolog-inter-

mediate form for a package, package body, entity, configuration, or architecture. The

configuration is not directly related to this project.

The entity The format for an entity is the following.

design-unit(Useentity(EntityName,Generics,PortNapDeclarations ,EntityBody)).

The terms and types of entity/5 are shown in Table 4. For the following VHDL model of an entity,

entity full-part is
generic(constant tPLH time);
port(a,b in bit;

C out bit);

attribute loc: integer;
begin

process (b)
begin
assert (a = '0');
end process;

end full-part;
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the following Prolog-intermediate form results

design..unit C
11.
entity(
f ulpart,

vhdl-.subtype~null ,tine ,null) ,null,null)

interfaceeoleuent (null, (a,b] ,in,vhdL-subtype(null~bit ,null) ,null,null),
interfac....leuent(null. Ec),out ,vhdl..subtype(null ,bit ,null) ,null ,null)

[attribut..declaration~loc ,inter)],

vhdl-process C
null,
(b].

[assert~expr~a,=,char(48)) ,null,null)I

Table 4. Terms and Types of entity/5

TermsTye
EntityName atom

Generics list-ofinterface..elements
PortMap Jist-ofin terface-eements

Declarations list-ofdeclarative..objects
EntityBody ,list-ofconcurrent-statements

The architecture The format for an architecture is the following.

arch( ArchitectureName ,Ent itylame ,Delcarations ,ArchitectureBody).

The terms and types of architecture/4 are shown in Table 5. From the following VHDL model
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architecture full-part of full-part is
signal d : bit;
begin

c <= a and b;
end full-part;

the following Prolog-intermediate form is generated.

des ign-unit (

11,
arch(

full-part,
full-part,

obj ect-declaration(

signal, Ed),vhdl-subtype(null,bit ,null),null,null)

csas(

null,
csa(

C,
null,

null,

wave(
E
event (expr(aand,b), null)

null )
] ))

) )).

Table 5. Terms and Types of architecture/4

Terms Types

ArchitectureName atom
EntityName atom
Declarations listof-declarative-objects

ArchitectureBody list-of-concurrent-statements
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The package The format for a package is the following.

package(Packagelaue ,Delcarat ions).

The terms and types of package/2 are shown in Table 6. From the following VHDL model

package Functions is

type opcode is CoctO, octI, oct2, oct3, oct4, oct5, oct6, act?);

function mnemonic (bit-.pattern in opcode) return integer;

procedure mnemonic (bit-.pattern in opcode;anaver :out integer);

end Functions;

the following Prolog-intermediate form is generated.
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design..unit C
11
package(

functions,

vhdl-.type(opcode. (octO,octl ,oct2,oct3,oct4,oct5,oct6,oct7)),
sub-.program(

sub-.spec C
mnemonic,

interface-~element C
null,
[bit-.pattern],
in,
vhdl-subtype (null ,opcode ,null) ,null ,null)

integer )
null ),

sub-.program(
sub..spec C
mnemonic,

interface-.element (
null,
[bit-.patternJ ,in,
vhdl..subtype (null ,opcode .null),
null,
null )

interface..element C
null,
[answer) ,out.
vhdl-subtype (null, integer,null),
null,
null)

nul
null )

Table 6. Terms and Types of package/2

Terms Types
PackageName atom
Declarations list-.o-declarative-objects
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The package body The format for a package body is the following.

package-body(Packagelame,Delcarations).

The terms and types of package.body/2 are shown in Table 7. From the following VHDL model

package body functions is

function mnemonic (bit.pattern in opcode) return integer is
variable a,b,c : integer; -- just for noise

begin
a := b + c;

case bit-pattern is
when octO => return(a);
when octl => return(a+b);
when oct2 => return(a+c);
when oct3 => return(a+a);
when oct4 => return(b+c);
when octS => return(b+b);
when oct6 => return(c+c);
when oct7 => return(b);
end case;

end mnemonic;

procedure mnemonic (bit-pattern in opcode;answer out integer) is

variable a,b,c : integer; -- just for noise

begin
a := b + c;
case bit-pattern is

when octO => answer a;
when octl => answer a+b;
when oct2 => answer a+c;
when oct3 => answer a+a;
when oct4 => answer b+c;
when oct5 => answer b+b;
when octS => answer c+c;
when oct7 => answer b;

end case;
end mnemonic;

end functions;

the following Prolog-intermediate form is generated.
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design-.unit C
(1)
package..body C

functions,

sub-.programC
sub-.spec C
mnemonic,

inter! ace-.element C
null,
[bit..pattern] ,in,
vhdl-subtype Cnull,opcode,ul.
null,
null)

integer )
program.body C

obj ect-.dclaration(
variable,
[a,b,c],
vhdl-subtype (null, integer,null),
null,
null)

assign~a~expr(b,+,c)),
case(C

bit-.pattern,

vhdl-.case( CoctO), Ereturn(a))),
vhdl-case(Coctl , [return(expr(a,+,b))J),
vhdl..case(Eoct2) , return~expr~a,+,c))1)
vhdl-.case([oct3) , returnLexpr~a,+,a))]),
vhdl-.case([oct4) , return(expr~b,+,c))])
vhdl-.case( Coct5) , return(expr~b,+ ,b))]),
vhdl-case( Eoct6) , return~expr~c,+,c))1)
vhdl-caseC(aoct) , [return(b))

sub-.program(
sub..spec C
mnemonic,

interface-element (null, Ebit-.pattern , in,
vhdl-subtype (null ,opcode ,null) ,null ,null),

inter! ace-.element (null, Canswer) ,out,
vhdl-subtype~null .integer ,null) ,null ,null)

null )
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program.body C

object-eclaration(variable. (a.b~c),
vhdl-subtype~null.integer ,null) ,null .null)

assign~a.expr~b,+,c)),
case(
bitpattern,

vhdl-.case( [octo] , assign(answera))),
vhdl-case([octl] , assign(answer~expr(a,+,b))]),
vhdl-.caseC Eoct2] , assign(answer,expr~a,+,c-))]),
vhdl-case(Eoct3) Eassign(ansuer,expr(a,+,a))])
vhdl-caseC oct4 , [assign~answer,expr~b,+, c))])
vhdl-.caseC [actS] , assign(answer~expr~b,+,b))]),
vhdl-case(Eoct6) , assign(answer,expr(c,+,c))])
vhdl-caseC Eoct7], Eassign(answer,b)])

Table 7. Terms and Types of package..body/2

I Terms ITypes
PackageName atom
Declarations Iist-ofdeclarative-objects

Translating Data Flow to Structure

Analysis of the VHDL Model Data-flow VHDL models express the composition of cir-

cuits at a gate level. Each data-flow statement is a digital-logic expression, representing a result in

terms of the logical composition of its sig i._s. An example of a data-flow statement is

architecture data-.flow of example is
signal a,b,c,d :bit;
begin
a <= b and c or d;
end data-fjlow;

120



A data-flow statement also contains implicit properties. One such property is a signal connecting

the result of b and c to the following or operator. An equivalent structural VHDL construction

would look like

architecture structural of example is

signal a,b,c,d : bit;
signal internal-signal : bit;

component and-gate
port(a,b in bit;

c out bit)

end component;
component or-gate

port(a,b in bit;

c out bit)
end component;

begin

and-gate : and-gate
port map(b,c,internal-signal);

or-gate : or-gate
port map(internal_ signal,d,a);

end structural;

Another implicit property of the data-flow statement is that all logical connectives are binary

operators except for the NOT operator. NOT is an unary operator. In consideration of the lan-

guage operators, AND, OR, NAND, NOR, XOR, and NOT, we need only consider implicit

signal declarations and six different components declarations. There are then two requirements for

translating data-flow VHTDL models to structural models. Implicit internal signals mus. be gener-

ated, declared, and placed. Secondly, the necessary components must be declared and instantiated

with the correct interconnecting signals.

In order to analyze the Prolog-intermediate form generated for a full VHDL description of a

data flow model, we will choose a descrip' Ion of a full adder, shown below.
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entity full-adder is
port (A,B,Cin : in bit;

Sum,Carry: out bit);
end full-adder;

architecture data-flow of full-adder is

signal interml : bit;

begin

interml <= a xor b;

sum <= interml xor cin;
carry <= (a and b) or (a and cin) or (b and cin);

end data-flow;

The Prolog-intermediate form generated for the entity is the following.

designunit (
[],
entity(
full-adder,
null,[

interface-element(null, [a,b, cin],in,
vhdl.subtype(null ,bit,null) ,null,null),

interface-element (null, [sum,carry],out,
vhdl-subtype(null ,bit ,null) ,null,null)

1,
[3,

The Prolog-intermediate form generated for the architecture is the following.

design-unit (
[].

arch(
data-flow,

full-adder,
[
object-declaration(signal, [intermil,

vhdl_.subtype(null ,bit,null),null,null)

[
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csas C
null,
caC

intermi,
null,
null,

wave(

event
expr(a,xor,b),
null)

3.
null)

csas C
null,
csa(

sum,
null,
null,

wave(C

event(C
expr(interml ,xor, ci),
null)

null)

csas C
null,
csa(
carry,
null,
null,

wave(

event(C
expr C

expr(
expr(a.and,b),
or,
expr~a,and,cin) )

or,
expr(b,and,cin) )

null)

null)
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I )).

From the Prolog-intermediate form, we are interested in two items. The first is the explicit

signal declarations in the entity and architecture. The second item is the expression trees formed by

the concurrent signal assignment statements. Figure 27 shows the three expression trees formed by

the three concurrent signal assignment statements from architecture data-flow of full-adder.

interml

t carryt t"
a b

or and

and and b cin
sum

t ab a cm

interml cin

Figure 27. Expression Trees from Concurrent Signal Assignment Statements.

Generating Structural VHDL The Prolog written to translate from data-flow VHDL to

structural VHDL generated the following result.

-- VHDL DESIGI UNIT #1
entity full-adder is

port
(a, b, cin:in bit;
sum, carry:out bit);

end full-adder;

-- VHDL DESIGN UNIT #2
architecture sic-data-flow of full-adder is
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component not-..gate generic
(constant tplh:time 0 ns;
constant tphl:time 0 ns);

port
(a:in bit;
b:out bit);

end component;
for all :not-gate
use entity work.inv(inv)

component xor..gate generic
(constant tplh:time 0 ns;
constant tphl:time 0 ns);

port
(a, b:in bit;
c:out bit);

end component;
for all :xor-.gate
use entity work. xor.gate(xor-gate)

component or-.gate generic
(constant tplh:time 0 ns;
constant tphl:time 0 ns);

port
(a, b:in bit;
c:out bit);

end component;
for all :or-.gate
use entity work.or-gate~or-gate)

component and-.gate generic
(constant tplh:time 0 ns;
constant tphl:time 0 ns);

port
(a, b:in bit;
c:out bit);

end component;
for all :and-.gate
use entity work.and.gate(an&..gate)

signal map..d2s0 bit;
signal map-d2sl :bit;
signal map..d2s2:bit;
signal map-.d2s3:bit;
signal map-.d2s4:bit;
signal intermi :bit;
begin

zor-gateO: xor-.gate generic map
(0 ns, 0 ns)

port map
(a, map-d2sO, intermi)
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not-gateO : not-gate generic map
(0 ns, 0 ns)

port map
(b, map-d2sO)

xor-gatel : xor.gate generic map
(0 n, 0 n)

port map
(interm1, cin, sum)

or-gateO : or-gate generic map
(0 ns, 0 ns)

port map
(map-d2sl, map-d2s2, carry)

or-gatel : or-gate generic map

(0 ns, 0 ns)
port map

(map-d2s3, map-d2s4, map-d2sl)

and-gateO and-gate generic map
(0 ns, 0 ns)

port map
(a, b, map-d2s3)

and-gatel and-gate generic map
(0 ns, 0 ns)

port map
(a, cin, map-d2s4)

and.gate2 : and-gate generic map
(0 ns, 0 ns)

port map
(b, cin, mapd2s2)

end sic.data-flow;

From the structural VHDL code, the following may be noticed. The correct component declarations

were made only for those components to be instantiated. Declaring components that are not

instantiated later can cause errors for some VHDL design systems. The correct signals were declared

for the implicit signals in the data-flow model. Lastly, all of the components were instantiated for

those operators in the data-flow model.
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Limitations and Features Currently, the translator does not handle signals declared

through the alias keyword. Furthermore, the translator has not been adapted to consider bit-vector

signsls. Other nondata-flow constructs in the architectural body of the VHDL model under con-

sideration are not touched. Therefore, sequential data-flow statements within a process are not

translated.

Since a VHDL. model may have component instantiations mixed with data-flow statements,

passing nondata-flow language constructs through untouched would yield the benefit of deriving a

fully structural model from a mixed data-flow/structural VHDL model. Handling bit-vectors was

also not considered in this step since it could be handled by another translation step. Therefore,

the translation from data-flow to structure could be kept simple.

Running d2s

d2s is tested through the use of the make utility in much the same manner as case2if. This

is to help reduce the number of keystrokes necessary to accomplish the task of building d2s and

testing it. Dependencies are set up for all test cases so that if d2s has not been built, it will be

automatically before testing. The expected results are kent in a directory called data. Thus, the

Unix diff utility may be used to compare the actual output of d2s with the expected in each test

case.

The two test cases were derived in this fashion. d2s was written first. The VHDL models

generated by d2s were then analyzed and simulated for comparison against the original model. The

two results are placed in the directory called data.

The procedure for logging into VERIFY.EL.WPAFB.AF.MIL and running the test cases is

the same as for casefif. The two test cases are explained below.

cidata This test case is a VHDL model of a full adder described using concurrent signal assignment

statements.
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form7 This test case is a model of a seven-input parity generator. The components were arranged

in such a fashion to provide as large a concurrent signal assignment statement as possible.

Included in this VHDL model is a process statement.
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Prolog Code for d2s

% d2s/1 is a Prolog routine to convert a VHDL model
% with data flow constructs to an equivalent VHDL model
% with component instantiations. d2s/1 calls upon vhdl-read/i
% of vhdl-parser to parse the original VHDL model.
% The expression trees formed by the VHDL concurrent
% signal assignment statements are used to generate the
% necessary implicit signal declarations as well as
%components. Finally, the new VHDL model is generated through
% write.vhdl-design.units/4 using a pretty-printer
% supplied in vhdl-parser.

. Limitation: In order to ensure all signal declarations are
% available for use, an entity with its respective
% architecture must exist in the one VHDL file supplied.

% d2s/1 must be loaded into vhdl.parser! The command is

% % vhdl-parser

% Quintus Prolog Release 2.4 (VAX, Ultrix 2.0-2.2)
. Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
% 1310 Villa Street, Mountain View, California (415) 965-7700

% I ?- compile(d2s).

% Afterwards, save the executable image in the following anner...

% ?- save(d2s).

% Execute by the following:

I ?- d2s(foo).

% Several tables are built in memory.

% signal-name(lame). So we don't have duplicate
% signal names.

% expression.tree(Resultlame,Tree). Where the data-flow statements
% are stored.

% comptable(ameIum). Components to be declared.
% And number instantiated.
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%. now....ignal-name-.nu(lua). lumber of how -any signal
% names have been generated.

%. new-signal-.name(lam.). Name of new signal

d2s(File) :
vhdl-.read(File ,DeuignUnits),
sap..d2sCDesigziUnits ,lewDesignxUnits),
tell('outfil..vhd'),
write-.vhdl-design-.units(lewDesignUnitsO.L. 0),
write-.list(L,O),
told.

%. test/2 was supplied for testing purposes.

test(
[design-.unit(Use,entityEntityae,Generic,Port,EntityDecl,EntityBody)),
design-.unit(Us.archCArchlase *Entitylaae,ArchDecl,ArchBody) )J,
[design...uitUse~entity(Entitylame,Generic,Port,EntityDecl ,EntityBody)),
deuign-.unitCUse,arch(Archlame,Entityae,ewArcbDecl ,NewArchBody))J)-

sap-.d2a-.build-.signal-.naae-.table (Port),
map-d2s-.build..uignal-.name..table CArchDcl),
sap-.d2a..buildexpreaiontr....table (ArchBody,N ~rhBy,
sap-.d2s-.generate-.new-.signals (Signals),
append(Signals ,ArchDecl ,NewkrchDecl).
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%%Y%X%%%%%%%%X%%%%XXX%%%%XYY%%%.XX%%%%%%XXXX%%%%%%X%%Y

%. map-.d2s/2 main driver routine for breaking out the signal
%. names and expression tree with the VHDL entity and
%. architecture pair. Signal tables are built from

%the entity and architecture. Components are contructed
%. from the expression trees formed by the concurrent
%. signal assignment statements. If the one entity
%. and architecture rule is not adhered to, a warning
%. is issued.

map..d2s C
[design-.unitUseE,ntity(Entitylame,Generic,PortEntityDecl.EntityBody)),
design-.unit(UseA,arch(Archlame,Entitylame,ArchDecl,ArchBody))J,
[design..unit(UseE,entityCEntitylame,Generic,Port ,EntityDecl ,EntityBody)),
design-.unit(UseA .arch(Archlame ,Entitylame,IewArchDecl ,NewArchBody) )J)-

map-.d2s-.build.signal.name..table (Port),
map-.d2s..build.s ignal-.name-.table (ArchDec1),
map-.d2s.buildexpression-.tree..table(ArchBody .IewArchBody),
map-d2s-.generate-.new-.signals (Signals),
map-.d2s-.generate-.new-.comps (Comps),

apped(Sinal,ArchDecl ,Intermkrcb~ecl),
appnd(omp,IntermArchDecl ,NewArchflecl).

map-d2s..,-) :
write('Please place one entity and its associated'),nl,
write('architecture in one file before rerunning'),nl,
writeC'd2s/1. ') ,nl,
fail.
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% % % %% %Y.Y % Y.Y % %.%..../%%/%.I%%/%f% % % %/U/%/Yh%%%% % % Y.%

% map..d2sgenerate.nev..comps/1 is used for building component

%declaration in the declarative region of the architecture.

map-d2s-generate-jlev.comps CE
vhdl-comp(

not-.gate,

interface-.eleuent(constant, EtplhJ ,null,
vhdl-subtype~null,time,null) ,null,vhdl-assign(pl(o,ns))),

iziterface..eleient(constant, Ctphl) ,null,
vhdl-.subtype~null~time,null) ,null,vhdl-assign(plCO~ns)))

interf ace-element (null, Ea),in,
vhdl-.subtype~null ,bit ,null) ,null ,null),

interface-.element~null, Eb),out,
vhdl-subtype(null ,bit ,null) ,null ,null)

vhdl-.spec~spec~all ,not..gate) ,bindingentity..aspectC
vhdl-.nae~prefix(vork) ,inv),
inv

null,
null ))I compsl)

retract Ccomp.table (not ,-u),

map-.d2s-generate-new-.comps CComps).
map-d2sgoeratenew-comps C

vhdl-coup(
Gatelame,

interface-..lement(constant, Etplh) ,null,
vhdl-.subtype(null,time,null),null,vhdl-.assign(pl(O,ns))),

interface..element(constant, Etphl null,
vhdl-subtype(nul,tie,null),null,vhdl-assign(plCO~ns)))

interface-.element(null, Ea,bJ,in
vhdl-.subtype~null~bit ,null) ,null,null),

interface-element(null, Ec) ,out,
vhdl-subtype(null ,bit ,null) ,null ,null)

vhdl-.spec~spec(all,Gatelaue) ,binding~entity-.aspectC
vhdl-name(prefix(work) ,Gatelame),
Gatelame )

null,
null )) I CopsI)

retract Ccomp-table(Nam,..um)),
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n~ame('..gate' ,Suffix),
name Clame,Pref ix),
append(Pref ix ,SuffixGatelameList).
namne(Gatelame ,Gat eNameList),
map-d.2s..generate.new.comps (Coups).

map-.d2s-.generate-.new-.comps ([]).

% map..d2s.generate-new-.signals/1 is used for generating a list
%. of signal declarations f or the newly formed signals.
%. The signal declarations are placed in the delcarative
%. region of the architecture.

map..d2s-generate.nev..signals C
[object-declaration~signal, [lame],

vhdl..subtype(null,bit .null) ,null ,null)1I bjDeclList])
retract Cnew..signal-name (lane)),

map-.d2s.generate-.new...ignalsObjDeclList).
map-.d2s-.gnerate-.new.signals ( J).

map-.d2s.buil-signal-name-.table C
[interface-..lementt-sig,SigList ,.mode,

vhdl-subtype~null,bit ,null) ,null,null)lISignallames])
map-.d2s..build-.s ignal.name.list..table (SigList),

uap-.d2s-.build.s ignal.name..table (Signallames).
map-.d2s..build..migal-name-.table C

Eobj ect..dsclarat ion(-.sig, SigList,
vhdl-subtype(null ,bit ,null) ,null ,null)lISignallamesl)
sap-2s-build-signal-name-.list-.table (SigList),

map-.d2s-.build.s ignal.naue-.table (Signallames).
sap-.d2s-.build-.signal-.name..table C LDeclltem ISignalNames])

uap-.d2s..build-.s ignal-.name-.table (Signallames).
map-.d2s-build-.signalname-.table([0).
map.d2sbuild..signal-name..table (null).
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%. mp-d2s.buildsignalname.list-.table/I builds a table of
%. declared signals. The table is used to keep track

%. of signals that are already declared.

sap-.d2s-.build-.signal-.naime-.list-.table( (SignallISigList])
assert(signalnae(Signal)),

map.d2s-.build-.signal-.naae-.list-.table CSigList).
uap-.d2s-.build-.signal-.name-.list-.table([0).

V. map-.d2s-.build-.expression-.tree..table/2 builds a list of
%component instantiations to be placed in the architecture
%body.

map-.d2s-.build-expression-tre..table C
(csas(TransCsa) IkrchBody] ,IeukrchBody)

map-.d2s-.convert-.caas-.tocomp~csas(Trans ,Csa) .Coiuplnst),

map-.d2s-.buildexpressiontree-.table(ArchBody. Interlrch~ody),
appendCComplnst .InterArchBody,IewArchBody).

map-.d2s-.build-expression-.tree-.table C
[Head lArch~ody) ,[HfeadllewArchBodyJ)

uap-.d2s-.build-e.xpression-.tree.table(Archflody ,JevArchBody).
map-.d2s-.buil&.exprssion-.tree-table([J .0).

%%.,.%%%%%~%V.%X%V.XV.V.%%%.VV..%Y.%V%%V/.%%%%%.4%.%%%V%.V%%...%%.V.%VV.%%%...
% ~x% % %% %% %%V.V% % X %%%% %Y.. % %%V.V. Y.%.%% . % % .. U.%% %.V.. %.% % % Y.VV.

% map.A2s.convert-.csas.to..comp/2 is used for breaking down
%. an expression tree.

map...d2s-convert.coas-to-comp C
csas(null,csa(Signallaa.,null,null, (wave([event(Exprnull)J ,null)))),
ComplnstList) :
map-.d2s-.convert-exprtocompCSignalae,Expr,ComplnstList).
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%%i%%ii%%YViYvirrUir% %% % %% YV/V Y.Y. % % YN/VYVVVV/. %%%%%%%*/
*/S/@/@/%U//S/*//%%5f.(y@/S/O/% *S99S9SSS@O*9@@*S/9/9/S/@/*/ %I/ Y/9/9/@/9/9/O/9/*/SSS@SSS* 9/

% map..d2s~convertexpr-to-.comp/2 is where the component is
%derived from an expression.

map..d2s-convert.expr-to-.comp(
Signallame,
expr(Opr,Signalamet),
[comp-.instantComplnstlame ,CompName,

[element(null,pl(O,ns)) .element~null,pl(O,ns))],
Eelement (null ,SignallameR),
element~null.Signallame)]))
atomCSignallameR),!,
map-2s-get..comp..name..inst(Opr ,Complnstlame,Complame),

map-d2s-convert.expr-to-.comp C
SignalName,
expr(Opr,Expr).
[comp..jnstant CComplnstlame ,CompName,

[element~null,plCO,ns)) ,element~null,pl(O,ns))],
[element nl,Signallamet),
element(nullSignallame)]) ICompListt)

map-d2s..get-comp..name-inst COpr, Complnstlane,Complame),
map-d2s-gensignal.name CSignallameR),
mapd2s..conver-expr-to-.compC

SignallameL,
Expr,
CompListt),

map..d2s-convert-.expr-to..comp C
Signallame,
exprCS ignallameL, Dpr, SignallameR),
(comp..AnstantCouplnstlame ,Complame,

Eelement(null,plCO,ns)),element~null,plCO,ns))) 9

Celement(null ,SignallameL) ,element (null ,Signallamet),
element~null,Signallame)])J

atom(SignallaueL),
atom(Signallamet),!,
map-d2sget-compname..inst COpr, Complnstiame ,Complame),

map-d2s-convert-expr-to-comp(
Signallam..
expr CExpr ,Opr.SignallameR) 9
(cop.,instant CComplnstlame ,Complame,

[element~null,plCO,ns)) ,element~null,plCO~ns))),
[element(null ,SignallameL) ,element(null ,SignallameR),
eleuent(null,Signallame)]) ICoupListLI
atom(SignallameR), I,

map..d2s.getcoup.name-inst (Opr, Complnstlame. CoupName),
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map..d2s.gen-.signal-nane(SignallameL),
map-d2s-convert.expr.to-comp(

SignallaneL,
Expr,
CompListL),

map-d2s-convert..expr-to-.comp C
Signallane,
expr (SignallaneL, Opr,Expr),
[comp-instant (Complnstlame ,Complans,

Eelement~null,pl(O,ns)),element~nul~pl(o,ns))],
[element (null ,SignallameL) ,elmn(null ,SignallameR),
element(nullSignalan.MI) ICompListRI

atom(SignallameL),!,
map-d2sget-.comp-name-inst COpr ,Coniplnstlame, Complan.),
map-d2s-gensignalnane (SignallaneR),
map-d2s-convertexpr-to-.comp(

S ignallamel,
Expr,
CoinpListR),

map-d2s-convertexpr-to-.comp C
Signallane,
expr(ExprL.Cpr ,ExprR),
[comp..Anstant (Complnstlame ,Copain,

[element(null,plCO,ns)),element~null,pl(O,ns))],
(element Cnull ,SignallaneL) ,elmn(null, SignallaneR),
element Cnull,Signallame)I)ICompListI) )-

map-.d2s-.get-comp..name-.inst COprCornplnstlame ,Complan.),
map..d2s-.gen-.signal-name (SignallaneL),
map-.d2s-gen-.signal-name (Signallameft),
map-d2s-convert-exprto-compC

SignallaneL,
ExprL,
CompListL),

map-d2s.convert..expr-to-comp(
SignallaneR,
ExprR,
CompListR),

append(CompListL ,CompListR,CompList),
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% map..d2s-gen-signal.name/1 builds a table of newly created
%signals. The table is to be used for reconstructing
%the declarative region of the architecture later.

map..2s-gen-.signal-.name(Signallame) :-
retract Cnev..signal-name-.num(Iuzu)),

name(Num,IumList),
name (map..d2s ,NameList),
append(lameList ,IumList .SiglameList),
name (TupSiglame .SiglameList),
map..d2s-r.eturn-good-.name CiNu.TupSiglane, IntlNu,Signallame),
lewlfum is Intlum + 1,
assert Cnew.signal-name(Signallfame)),
assert (new..signal-nane-.nm(ewlum)),!.

map-d2s-gen-.signal-.name(Signallame)-
nameCO,IumList),
name Cmap-.d2s .NameList),
append(lameList ,IumList ,SiglameList),
name CTmpSiglame,SiglameList),
map..d2s..return-.goo-nameCO,ThpSigName ,Intlum,Signallame),
lewlum is Intlun + 1,
assert Cnew-.signal-name(Signallame)),
assert Cnew-.signal-name...num(evlum)),!.

% map-d2s-return.good-name/4 is used to ensure that a newly
%. created signal name doesn't already exist.

map..d2s..return-good-name(Num,TmpSiglame ,Ne ui,Signallfame)-
signal-name CTmpSigName),

Intlum is Num + 1,
name Cmap-d2s ,IameList),
name(CIntlum, IntlumList),
append ClameList,IntlumList ,IntSiglameList),
naue(IntSigaie, IntSiglameList),

map.d2s.returngoodname(lntlum, IntSiglame ,IewNu,SignalName).
map-d2s-return-goodname(lum,Siglame ,Ium,Siglame).
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% * ..%%%%% %%YY ./Y Y.YYY %% %Yvv/ v///Y. .r/Y .Y %%% %YVY. % %% YY=% Y.Y

% map-.d2s-.get-.comp-.nae.inst/3 is used to generated component
% labels in the archtecture body.

map-2s-get..comp-.name.inst (Opr ,Complnstiame ,CompName)-
retract(comp..table(Opr.Ium)),

nameCOpr,Gatelame),
nameC'-.gate',Extension), %I1 know this looks inefficient

%but I want this to work on
%ANY machine.

appendCGatelame Extensio,ComplameList),
name (Complame.ComplameList),
name CNum,IumList),
append(ComplameList,IumList .ComplnstlameList),
name (Complnstiame ,ComplnstlameList),
Newlun is Num + 1,
assert Ccomp-.tableCOpr,Iewlun)),.

map..A2s..get-comp-.name~inst COpr,Complnstlame,Complame)-
name(Opr,Gatelame),
nameC'-.gate',Extension), %I know this looks inefficient

%but I want this to work on
%ANY machine.

appendCGatelame,Extension,ComplfameList),
name (Complame ,ComplameList),
nameCO,Ium),
append(ComplameList ,IumComplnstlameList),
name CComplnstlame,ComplnstlameList),
assert(comp.table(Dpr, 1)).

%. UTILITIES

%append(C U L,L).
%appendCEHILl],L2,(HIL3])
%. appendCLl,L2,L3).

Corrections to vhdL parser

The first correction made to vhdLparser involved the proper differentiation between package

and package body. Originally, vhdLparser would translate the following VHDL
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package body functions is

function mnemonic (bit-pattern : in opcode) return integer is
variable c : integer; -- just for noise

begin
return(c);

end mnemonic;

end functions;

to

-- VHDL DESIGN UNIT #1
package functions is

function mnemonic(bit-pattern:in opcode) return integer is
variable c: integer;

begin
return c;

end mnemonic;

end functions;

which produced an invalid VIIDL package.

The corrections made to vhdiLparser are shown below.

In the file vhdl.tex, Rule 16 was changed from

vhdl-packagebody(package(ID,DIs)) -->

[ package, body ), vhdl-identifier(ID), [ is 1,
vhdl.opt.declarative.items (DIs),

[ end ], vhdl_optidentifier(ID).

to

vhdl-packagebody(package-body (ID,DIs)) -- >

[ package, body ), vhdlidentifier(ID), [ is ),
vhdl-opt-declarative-items(DIs),

[ end 1, vhdl-optidentifier(ID).
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In the file vhdl-write.tex, Rule 16 was changed from

writ e-vhdl-package.body (package (ID,DIs)) -->
"package body ", write-vhdl-identifier(ID), s is,"

[indent],
writevhdl-optdeclarative-items(Dis),

[undent],
"end ", write-vhdl-opt-identifier(ID).

to

write-vhdl-package-body(package-body(ID,DIs)) -- >

"package body ", write-vhdl-identifier(ID), is "

[indent],
writ e-vhdl-opt.declarative-items(DIs).

[undent],
"end ", write-vhdl-optidentifier(ID).

Another problem encountered with vhdLparser was the pretty-printing of physical types. For

a line that looks like

6 ns;

the pretty-printed result would look like

6ns;

leaving a syntactically-incorrect VHDL model. In order to correct this problem, Rule 5 in

vhdl-write.tex was changed from

write-vhdl-physical-literal(pl(AL,ID)) -- >

write-vhdl-abstract-literal(AL),
write_vhdlidentifier(ID).

to
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write-vhdl-physical-literal(pl(AL,ID)) -- >

write-vhdl-abstract-literal(AL) 1 " ,

write-vhdl-identifier (ID).

Uncorrected Problems with vhdl-parser

Listed in this appendix are errors encountered in vhdl-parser that have not been corrected.

Both errors involve subtleties with special characters and integers.

The first error involves integer representation in vhdLparser when a bit-vector is intended.

Leading zeros in bit-vectors are dropped due to the conversion to integer during file input with

vhdLgettokenline/1. For an input line with 001 as a bit-vector, the resulting representation is

1. The pretty-printed VHDL code will contain a syntax error due to this problem.

The second error involves the use of the quote character, -; in VHDL. The quote character is

essentially dropped. Therefore, an assert statement,

assert (expected = actual) report "conflict" severity error;

is reprinted as

assert (expected = actual)

report conflictseverity error;

causing a syntax error.

Conclusion

The process of translating data-flow to structure was successful in that the resulting VHDL

code yielded the simulation results as the original VHDL code. Separating the d2s from ges allowed

for ease of testing, isolation from changes, and ease of code development. Also worth noting is that
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a partial data-flow VHDL model will only have the data-flow portion changed by d2s, leaving the

rest of the VHDL model alone.

The errors found in vhdl-parser were noted and fixed as indicated. Not all errors were cor-

rected. The errors remaining to be corrected were not devastating to tool development.
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Appendix E. Formal Methods

Formal methods are used to provide a systematic basis for specifying, developing, and verify-

ing relations between a specification and an implementation (Wing 90b:8). Some of the relations or

properties examined by formal methods may include, but are not limited to, equivalence, implica-

tion, reliability, safety, liveness, consistency, or completeness. Some formal methods familiar to the

design engineer involved in VLSI design include design-rule checking, synthesis, silicon compilation,

and petri nets. These formal methods have a mathematical basis; however, methods that involve

ad hoc simulation are not considered formal.

Logic extraction is a formal method that is used to verify the equivalence between a component

netlist and a VIlDL structural description. The VHDL description is the structural specification

and the component netlist represents the layout specification 1 . Furthermore, logic extraction may

also be used to examine configuration properties (i.e., design rule checks), reliability properties,

and temporal properties of a digital circuit.

To help show that logic extraction is a formal method, we will use the notation

rl-a

(Duffy 91:31-34,43-54) where r is a set of assumptions or axioms and a is the theorem to be proved.

F sets the context for proving the theorem a. Another way of expressing F - a is

7 1 A...An : a

where each Yi E F and 1 < i < n.

A transistor netlist is extracted from the layout specification using already-existing CAD tools.
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Various rules of inference may be used to demonstrate that a follows from r. One inference

rule is the rewrite rule. With respect to r i- a, a rewrite rule applies a replacement in a specified

by some 7yi. The replacement is not necessarily always a reducing one. For ti to be used as the

basis for a rewrite, y, must be in the form t = t'. A replacement occurs through a rewrite in a

when some expression of a is in the form of t0. For the formula

(C=AAB) F C= AvB

a rewrite would result in

(C=AAB) F (AAB)=>(AVB).

By the definition of F F a the formula may be rewritten as

(C=AAB),A,B - AVB

which yields 3

(C=AAB),A,B F TVB

and finally

(C= AAB),A,B - T.

In a logical sense, logic extraction may be viewed as

Extraction Rules f- Layout Specification * Structural Specification

2The choice of matching t and replacing with t' versus matching t' and replacing with t is inconsequential provided
the matching is done to prevent an infinite matching/replace cycle.

3 T is used to denote logical true. Each -y, is assumed true; therefore, everywhere that an expression in a matches
a y,, T is substituted for the expression.
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where ExtractionRules form the context r of a, the Layout Specification is represented by a

component netlist, and the StructuralSpecification is the top-level component represented by the

specification. Further Layout Specification €* Structural Specification is the theorem a.

As an example, consider the following.

(c,(X, Y) A c2 (x, Y) = c3 (X, Y)),

(c3(X,Y)Ac 4(Y,Z)=cs(X,Y,Z)) F (cl(a,b)Ac 2(a,b)Ac4(b,c)) *c 5(a,b,c) (19)

(cI(X, Y) A c2 (X, Y) = c3 (X, Y)),

(ca(X, Y) A c4 (Y, Z) = cs(X, Y, Z)) I- (ca(a, b) A c4(b, c)) * cs(a, b, c) (20)

(c 1 (X, Y) A c2 (x, Y) = c3(X, Y)),

(c3(X,Y)Ac 4(YZ)=c5 (X,Y,Z)) I- c5(a,b,c) * cs(a,b,c) (21)

In Eq 19, the ExtractionRules are listed as the assumptions concerning the environment of the

proof. Also included is a list of the components from the LayoutSpecification. Iii Eq 20, a rewrite

of the LayoutSpecification has been applied from the assumption list. The derivation in Eq 20

gives a new representation of the LayoutSpecification, but not in a form readily provable. Finally,

in Eq 21, another rewrite of the LayoutSpecification is performed from the list of assumptions.

The final result is readily proven true.

A discussion on the basis of formal methods may be found in (Wing 89), (Wing 90a), and

(Wing 90b). Further information on formal methods may also be found in (MacLe 90:52-61),

(Beth 62), (Ramsa 91), (Schar 88), and (Gordo 88).
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